991 resultados para Cognitive Load
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.
Resumo:
As end-user computing becomes more pervasive, an organization's success increasingly depends on the ability of end-users, usually in managerial positions, to extract appropriate data from both internal and external sources. Many of these data sources include or are derived from the organization's accounting information systems. Managerial end-users with different personal characteristics and approaches are likely to compose queries of differing levels of accuracy when searching the data contained within these accounting information systems. This research investigates how cognitive style elements of personality influence managerial end-user performance in database querying tasks. A laboratory experiment was conducted in which participants generated queries to retrieve information from an accounting information system to satisfy typical information requirements. The experiment investigated the influence of personality on the accuracy of queries of varying degrees of complexity. Relying on the Myers–Briggs personality instrument, results show that perceiving individuals (as opposed to judging individuals) who rely on intuition (as opposed to sensing) composed queries more accurately. As expected, query complexity and academic performance also explain the success of data extraction tasks.
Resumo:
This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.
Resumo:
Mapas Conceituais são representações gráficas do conhecimento de uma pessoa num dado momento e área de conhecimento. Por sua natureza investigativa, são utilizados como ferramentas de apoio em abordagens pedagógicas que objetivam promover a aprendizagem significativa. No entanto, o processo de avaliação de um mapa tende a ser custoso pois acarreta uma pesada carga de processamento cognitivo por parte do avaliador, já que este precisa mapear os conceitos e relações em busca de nuances de conhecimento alí presentes. Essa pesquisa tem por objetivo aumentar o nível de abstração nas interações entre o avaliador e os mapas conceituais fornecendo uma camada intermediária de inteligência computacional que favoreça a comunicação por meio de perguntas e respostas em linguagem natural, fornecendo ao avaliador ferramentas que lhe permita examinar o conteúdo do mapa conceitual sem exigir deste o mapeamento visual dos conceitos e relações presentes nos mapas avaliados. Uma ferramenta é prototipada e uma prova de conceito apresentada. A análise da arquitetura proposta permitiu definir uma arquitetura final com características que permitem potencializar o uso de mapas conceituais e facilitar diversas operações pedagógicas com estes. Essa pesquisa situa-se na área de investigação de sistemas de perguntas e resposta, aplicando técnicas de processamento de linguagem natural para análise da pergunta e interpretação do mapa conceitual e aplica técnica de inteligência artificial para inferir respostas às perguntas.
Resumo:
Body and brain undergo several changes with aging. One of these changes is the loss of neuroplasticity, which leads to the decrease of cognitive abilities. Hence the necessity of stopping or reversing these changes is of utmost importance to contemporary society. In the present work, electroencephalogram (EEG) markers of cognitive decline are sought whilst the subjects perform the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young and elder participants. The results suggest that coherence on theta and alpha EEG rhythms decrease with aging and increase with performance. Additionally, theta phase coherence seems more sensitive to performance, while alpha synchronization appears as a potential ageing marker.
Resumo:
With the number of elderly people increasing tremendously worldwide, comes the need for effective methods to maintain or improve older adults' cognitive performance. Using continuous neurofeedback, through the use of EEG techniques, people can learn how to train and alter their brain electrical activity. A software platform that puts together the proposed rehabilitation methodology has been developed: a digital game protocol that supports neurofeedback training of alpha and theta rhythms, by reading the EEG activity and presenting it back to the subject, interleaved with neurocognitive tasks such as n-Back and Corsi Block-Tapping. This tool will be used as a potential rehabilitative platform for age-related memory impairments.
Resumo:
Previous research has demonstrated the importance of developing legitimacy initiatives in order to create new business opportunities, satisfy shareholders, and obtain access to resources. Within this framework, cognitive legitimacy plays a key role. Through a case study of six Spanish public universities, the authors measure the relationship between cognitive legitimacy, access to resources, and organizational results. The results support the assertion that organizations with more cognitive legitimacy have greater access to resources and improved their results. This study contributes with muchneeded empirical research on cognitive legitimacy and demonstrates its usefulness as an explanative factor of organizational success.
Resumo:
Since the number and proportion of old people increases worldwide, health professionals and systems should be made aware and prepared to deal with their problems. Cognitive deficit and symptoms of depression are commom among the elderly, and may occur in relation to various risk factors such as health conditions and psychosocial variables. In order to study cognitive deficit and the presence of signs and symptoms of depression, 62 elderly community subjects enrolled at a Community Health Unit in Porto Alegre, southern Brazil, were interviewed. They were evaluated by means of the Mini Mental State Exam, the Montgomery-Asberg Depression rating scale, and a questionnaire on health conditions, living arrangements and social variables. Higher levels of symptoms of depression were observed among subjects exposed to major risk factors for cerebrovascular diseases (diabetes and coronary disease), while impaired cognitive performance was seen among individuals who could not count on the presence of a confidant (social network variable). The results suggest that the early identification of major risk groups among old people can help to prevent institutionalization and keep individuals in the community.
Resumo:
OBJECTIVE: To evaluate the discriminative and diagnostic values of neuropsychological tests for identifying schizophrenia patients. METHODS: A cross-sectional study with 36 male schizophrenia outpatients and 72 healthy matched volunteers was carried out. Participants underwent the following neuropsychological tests: Wisconsin Card Sorting test, Verbal Fluency, Stroop test, Mini Mental State Examination, and Spatial Recognition Span. Sensitivity and specificity estimated the diagnostic value of tests with cutoffs obtained using Receiver Operating Characteristic curves. The latent class model (diagnosis of schizophrenia) was used as gold standard. RESULTS: Although patients presented lower scores in most tests, the highest canonical function for the discriminant analysis was 0.57 (Verbal Fluency M). The best sensitivity and specificity were obtained in the Verbal Fluency M test (75 and 65, respectively). CONCLUSIONS: The neuropsychological tests showed moderate diagnostic value for the identification of schizophrenia patients. These findings suggested that the cognitive impairment measured by these tests might not be homogeneous among schizophrenia patients.
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.