907 resultados para Coeficientes de wavelet
Resumo:
A methodology has been developed which allows a non-specialist to rapidly design silicon wavelet transform cores for a variety of specifications. The cores include both forward and inverse orthonormal wavelet transforms. This methodology is based on efficient, modular and scaleable architectures utilising time-interleaved coefficients for the wavelet transform filters. The cores are parameterized in terms of wavelet type and data and coefficient word lengths. The designs have been captured in VHDL and are hence portable across a range of silicon foundries as well as FPGA and PLD implementations.
Resumo:
A rapid design methodology for biorthogonal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture for the wavelet filters. The architecture offers efficient hardware utilization by combining the linear phase property of biorthogonal filters with decimation in a MAC based implementation. The design has been captured in VHDL and parameterized in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet based system is typically less than a day. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
A methodology for the production of silicon cores for wavelet packet decomposition has been developed. The scheme utilizes efficient scalable architectures for both orthonormal and biorthogonal wavelet transforms. The cores produced from these architectures can be readily scaled for any wavelet function and are easily configurable for any subband structure. The cores are fully parameterized in terms of wavelet choice and appropriate wordlengths. Designs produced are portable across a range of silicon foundries as well as FPGA and PLD technologies. A number of exemplar implementations have been produced.
Resumo:
The aim of this study was to compare time-domain waveform analysis of second-trimester uterine artery Doppler using the resistance index (RI) with waveform analysis using a mathematical tool known as wavelet transform for the prediction of pre-eclampsia (PE). This was a retrospective, nested case-cohort study of 336 women, 37 of whom subsequently developed PE. Uterine artery Doppler waveforms were analysed using both RI and waveform analysis. The utility of these indices in screening for PE was then evaluated using receiver operating characteristic curves. There were significant differences in uterine artery RI between the PE women and those with normal pregnancy outcome. After wavelet analysis, significant difference in the mean amplitude in wavelet frequency band 4 was noted between the 2 groups. The sensitivity for both Doppler RI and frequency band 4 for the detection of PE at a 10% false-positive rate was 45%. This small study demonstrates the application of wavelet transform analysis of uterine artery Doppler waveforms in screening for PE. Further prospective studies are needed in order to clearly define if this analytical approach to waveform analysis may have the potential to improve the detection of PE by uterine artery Doppler screening.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
This paper proposes a method to assess the small signal stability of a power system network by selective determination of the modal eigenvalues. This uses an accelerating polynomial transform, designed using approximate eigenvalues
obtained from a wavelet approximation. Application to the IEEE 14 bus network model produced computational savings of 20%,over the QR algorithm.
Resumo:
This paper introduces an algorithm that calculates the dominant eigenvalues (in terms of system stability) of a linear model and neglects the exact computation of the non-dominant eigenvalues. The method estimates all of the eigenvalues using wavelet based compression techniques. These estimates are used to find a suitable invariant subspace such that projection by this subspace will provide one containing the eigenvalues of interest. The proposed algorithm is exemplified by application to a power system model.
Resumo:
Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the reduction properties of the wavelet transform using real power system data and discusses the application of the reduction method for information transfer in network communications.
Resumo:
Periodic monitoring of structures such as bridges is necessary as their condition can deteriorate due to environmental conditions and ageing, causing the bridge to become unsafe. This monitoring - so called Structural Health Monitoring (SHM) - can give an early warning if a bridge becomes unsafe. This paper investigates an alternative wavelet-based approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. A simplified vehicle-bridge interaction model is used in theoretical simulations to examine the effectiveness of the approach in detecting damage in the bridge. The accelerations of the vehicle are processed using a continuous wavelet transform, allowing a time-frequency analysis to be performed. This enables the identification of both the existence and location of damage from the vehicle response. Based on this analysis, a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level, signal noise level and road surface roughness on the accuracy of results. In addition, a laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the approach to detect changes in the bridge response.
Resumo:
This paper presents the results of an experimental investigation, carried out in order to verify the feasibility of a ‘drive-by’ approach which uses a vehicle instrumented with accelerometers to detect and locate damage in a bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform and damage indicators are evaluated and compared. Alternative statistical pattern recognition techniques are incorporated to allow for repeated vehicle passes. Parameters such as vehicle speed, damage level, location and road roughness are varied in simulations to investigate the effect. A scaled laboratory experiment is carried out to assess the effectiveness of the approach in a more realistic environment, considering a number of bridge damage scenarios.
Resumo:
This paper investigates a wavelet-based damage detection approach for bridge structures. By analysing the continuous wavelet transform of the vehicle response, the approach aims to identify changes in the bridge response which may indicate the existence of damage. A numerical vehicle-bridge interaction model is used in simulations as part of a sensitivity study. Furthermore, a laboratory experiment is carried out to investigate the effects of varying vehicle configuration, speed and bridge damping on the ability of the vehicle to detect changes in the bridge response. The accelerations of the vehicle and bridge are processed using a continuous wavelet transform, allowing time-frequency analysis to be carried out on the responses of the laboratory vehicle-bridge interaction system. Results indicate the most favourable conditions for successful implementation of the approach.