953 resultados para Coat traits
Resumo:
Public goods cooperation is common in microbes, and there is much interest in understanding how such traits evolve. Research in recent years has identified several important factors that shape the evolutionary dynamics of such systems, yet few studies have investigated scenarios involving interactions between multiple public goods. Here, we offer general predictions about the evolutionary trajectories of two public goods traits having positive, negative or neutral regulatory influence on one another's expression, and we report on a test of some of our predictions in the context of Pseudomonas aeruginosa's production of two interlinked iron-scavenging siderophores. First, we confirmed that both pyoverdine and pyochelin siderophores do operate as public goods under appropriate environmental conditions. We then tracked their production in lines experimentally evolved under different iron-limitation regimes known to favour different siderophore expression profiles. Under strong iron limitation, where pyoverdine represses pyochelin, we saw a decline in pyoverdine and a concomitant increase in pyochelin - consistent with expansion of pyoverdine-defective cheats derepressed for pyochelin. Under moderate iron limitation, pyochelin declined - again consistent with an expected cheat invasion scenario - but there was no concomitant shift in pyoverdine because cross-suppression between the traits is unidirectional only. Alternating exposure to strong and moderate iron limitation caused qualitatively similar though lesser shifts compared to the constant-environment regimes. Our results confirm that the regulatory interconnections between public goods traits can significantly modulate the course of evolution, yet also suggest how we can start to predict the impacts such complexities will have on phenotypic divergence and community stability.
Resumo:
Community-level patterns of functional traits relate to community assembly and ecosystem functioning. By modelling the changes of different indices describing such patterns - trait means, extremes and diversity in communities - as a function of abiotic gradients, we could understand their drivers and build projections of the impact of global change on the functional components of biodiversity. We used five plant functional traits (vegetative height, specific leaf area, leaf dry matter content, leaf nitrogen content and seed mass) and non-woody vegetation plots to model several indices depicting community-level patterns of functional traits from a set of abiotic environmental variables (topographic, climatic and edaphic) over contrasting environmental conditions in a mountainous landscape. We performed a variation partitioning analysis to assess the relative importance of these variables for predicting patterns of functional traits in communities, and projected the best models under several climate change scenarios to examine future potential changes in vegetation functional properties. Not all indices of trait patterns within communities could be modelled with the same level of accuracy: the models for mean and extreme values of functional traits provided substantially better predictive accuracy than the models calibrated for diversity indices. Topographic and climatic factors were more important predictors of functional trait patterns within communities than edaphic predictors. Overall, model projections forecast an increase in mean vegetation height and in mean specific leaf area following climate warming. This trend was important at mid elevation particularly between 1000 and 2000 m asl. With this study we showed that topographic, climatic and edaphic variables can successfully model descriptors of community-level patterns of plant functional traits such as mean and extreme trait values. However, which factors determine the diversity of functional traits in plant communities remains unclear and requires more investigations.
Resumo:
The objective of this study was to obtain genetic marker information in the Gyr breed by analyzing bGH and Pit-1 gene polymorphisms and to verify their association with milk production traits. One sample including 40 Gyr bulls were genotyped at two bGH gene restriction sites (bGH- AluI and bGH-MspI) and at one restriction site in the Pit-1 gene (Pit-1 HinfI). The bGH-MspI(-) allele was favorable for fat milk percentage. The heterozigous Pit-1 HinfI (+/-) bulls were superior for fat milk production, in relation to homozigous Pit-1 HinfI (+/+). The Pit-1 and bGH genes are strong candidates in the dairy cattle QTL search, and zebuine populations are promising samples for this purpose.
Resumo:
Evaluation of root traits may be facilitated if they are assessed on samples of the root system. The objective of this work was to determine the sample size of the root system in order to estimate root traits of common bean (Phaseolus vulgaris L.) cultivars by digital image analysis. One plant was grown per pot and harvested at pod setting, with 64 and 16 pots corresponding to two and four cultivars in the first and second experiments, respectively. Root samples were scanned up to the completeness of the root system and the root area and length were estimated. Scanning a root sample demanded 21 minutes, and scanning the entire root system demanded 4 hours and 53 minutes. In the first experiment, root area and length estimated with two samples showed, respectively, a correlation of 0.977 and 0.860, with these traits measured in the entire root. In the second experiment, the correlation was 0.889 and 0.915. The increase in the correlation with more than two samples was negligible. The two samples corresponded to 13.4% and 16.9% of total root mass (excluding taproot and nodules) in the first and second experiments. Taproot stands for a high proportion of root mass and must be deducted on root trait estimations. Samples with nearly 15% of total root mass produce reliable root trait estimates.
Resumo:
OBJECTIVE: We investigated factors associated with masked and white-coat hypertension in a Swiss population-based sample. METHODS: The Swiss Kidney Project on Genes in Hypertension is a family-based cross-sectional study. Office and 24-hour ambulatory blood pressure were measured using validated devices. Masked hypertension was defined as office blood pressure<140/90 mmHg and daytime ambulatory blood pressure≥135/85 mmHg. White-coat hypertension was defined as office blood pressure≥140/90 mmHg and daytime ambulatory blood pressure<135/85 mmHg. Mixed-effect logistic regression was used to examine the relationship of masked and white-coat hypertension with associated factors, while taking familial correlations into account. High-normal office blood pressure was defined as systolic/diastolic blood pressure within the 130-139/85-89 mmHg range. RESULTS: Among the 652 participants included in this analysis, 51% were female. Mean age (±SD) was 48 (±18) years. The proportion of participants with masked and white coat hypertension was respectively 15.8% and 2.6%. Masked hypertension was associated with age (odds ratio (OR) = 1.02, p = 0.012), high-normal office blood pressure (OR = 6.68, p<0.001), and obesity (OR = 3.63, p = 0.001). White-coat hypertension was significantly associated with age (OR = 1.07, p<0.001) but not with education, family history of hypertension, or physical activity. CONCLUSIONS: Our findings suggest that physicians should consider ambulatory blood pressure monitoring for older individuals with high-normal office blood pressure and/or who are obese.
Resumo:
Objective: Blood pressure is known to aggregate in families. Yet, heritability estimates are population-specific and no Swiss data have been published so far. Moreover, little is known on the heritability of the white-coat effect. We investigated the heritability of various blood pressure (BP) traits in a Swiss population-based sample. Methods: SKIPOGH (Swiss Kidney Project on Genes in Hypertension) is a family-based multi-centre (Lausanne, Bern, Geneva) cross-sectional study that examines the role of genes in determining BP levels. Office and 24-hour ambulatory BP were measured using validated devices (A&D UM-101 and Diasys Integra). We estimated the heritability of systolic BP (SBP), diastolic BP (DBP), heart rate (HR), pulse pressure (PP), proportional white-coat effect (i.e. [office BP-mean ambulatory daytime BP]/mean ambulatory daytime BP), and nocturnal BP dipping (difference between mean ambulatory daytime and night-time BP) using a maximum likelihood method implemented in the SAGE software. Analyses were adjusted for age, sex, body mass index (BMI), and study centre. Analyses involving PP were additionally adjusted for DBP. Results: The 517 men and 579 women included in this analysis had a mean (}SD) age of 46.8 (17.8) and 47.8 (17.1) years and a mean BMI of 26.0 (4.2) and 24.2 (4.6) kg/m2, respectively. Heritability estimates (}SE) for office SBP, DBP, HR, and PP were 0.20}0.07, 0.20}0.07, 0.39}0.08, and 0.16}0.07 (all P<0.01). Heritability estimates for 24-hour ambulatory SBP, DBP, HR, and PP were, respectively, 0.39}0.07, 0.30}.08, 0.19}0.09, and 0.25}0.08 (all P<0.05). The heritability of the white-coat effect was 0.29}0.07 for SBP and 0.31}0.07 for DBP (both P<0.001). The heritability of nocturnal BP dipping was 0.15}0.08 for SBP and 0.22}0.07 for DBP (both P<0.05). Conclusions: We found that the white-coat effect is significantly heritable. Our findings show that BP traits are moderately heritable in a multi-centric study in Switzerland, in line with previous population-based studies, justifying the ongoing search for genetic determinants in this field.
Resumo:
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.
Resumo:
For the past several year Kossuth County has had a scheduled maintenance program of bituminous seal coating. This program has been used to maintain the 467 miles of asphaltic concrete surfaced roads in Kossuth County. Since most of the experience that Kossuth County had in seal coating was with cutback asphalt, it was decided to include the use of emulsified asphalt in Kossuth County's 1980 seal coat program. Federal Demonstration Project Funds were requested from the Federal Highway Administration to study the use of emulsified asphalt and funding was granted under Demonstration Project No. 55,:Asphalt Emulsions for Highway Construction." Items studied were design and construction procedure cost of alternate material, energy consumption and environmental considerations. A construction contract was awarded to Everds Brothers, Inc. of Algona, Iowa, on July 1, 1980. There were four bidders on the 54.5 miles of seal coating that was let. A map showing the location of the seal coating projects is shown in Appendix A, and a copy of the contract is shown in Appendix B. The contractor started the project on July 11, 1980 and completed the project on August 1, 1980. Construction inspection and follow-up inspections of the project were conducted by personnel of the Kossuth County Engineer's Office and testing of the materials, friction testing and road rater testing were conducted by the Material's Department of the Iowa Department of Transportation.
Resumo:
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.