976 resultados para Cloud Storage Google
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
Simulating the efficiency of business processes could reveal crucial bottlenecks for manufacturing companies and could lead to significant optimizations resulting in decreased time to market, more efficient resource utilization, and larger profit. While such business optimization software is widely utilized by larger companies, SMEs typically do not have the required expertise and resources to efficiently exploit these advantages. The aim of this work is to explore how simulation software vendors and consultancies can extend their portfolio to SMEs by providing business process optimization based on a cloud computing platform. By executing simulation runs on the cloud, software vendors and associated business consultancies can get access to large computing power and data storage capacity on demand, run large simulation scenarios on behalf of their clients, analyze simulation results, and advise their clients regarding process optimization. The solution is mutually beneficial for both vendor/consultant and the end-user SME. End-user companies will only pay for the service without requiring large upfront costs for software licenses and expensive hardware. Software vendors can extend their business towards the SME market with potentially huge benefits.
Resumo:
How can applications be deployed on the cloud to achieve maximum performance? This question is challenging to address with the availability of a wide variety of cloud Virtual Machines (VMs) with different performance capabilities. The research reported in this paper addresses the above question by proposing a six step benchmarking methodology in which a user provides a set of weights that indicate how important memory, local communication, computation and storage related operations are to an application. The user can either provide a set of four abstract weights or eight fine grain weights based on the knowledge of the application. The weights along with benchmarking data collected from the cloud are used to generate a set of two rankings - one based only on the performance of the VMs and the other takes both performance and costs into account. The rankings are validated on three case study applications using two validation techniques. The case studies on a set of experimental VMs highlight that maximum performance can be achieved by the three top ranked VMs and maximum performance in a cost-effective manner is achieved by at least one of the top three ranked VMs produced by the methodology.
Resumo:
Il lavoro sviluppato deriva dalla creazione, in sede di tirocinio, di un piccolo database, creato a partire dalla ricerca dei dati fino alla scelta di informazioni di rilievo e alla loro conseguente archiviazione. L’obiettivo dell’elaborato è rappresentato dalla volontà di ampliare quella conoscenza basilare posseduta sul mondo dell’informazione dal punto di vista gestionale. Infatti, considerando lo scenario odierno, si può affermare che lo studio del cliente attraverso delle informazioni rilevanti, di vario tipo, è una delle conoscenze fondamentali nel mondo dell’ingegneria gestionale. Il metodo di studio utilizzato è basato sulla comprensione delle diverse tipologie di dati presenti nel mondo aziendale e, di conseguenza, al loro legame con il mondo del web e soprattutto con i metodi di archiviazione più moderni e più utilizzati oggi sia dalle aziende, che non dai privati stessi; le piattaforme cloud. L’elaborato si suddivide in tre argomenti differenti ma strettamente collegati tra loro; la prima parte tratta di come l’informazione più basilare vada raccolta ed analizzata, la sezione centrale è legata al tema chiave dell’internet come mezzo di archiviazione e non più solo come piattaforma di ricerca del dato, mentre nel capitolo finale viene chiarito il concetto di cloud computing, comodo veloce ed efficiente, considerato da qualche anno il punto d’incontro fra i primi due argomenti. Nello specifico si andranno a presentare alcuni di applicazione reale del cloud da parte di aziende come Amazon, Google e Facebook, multinazionali che ad oggi sono riuscite a fare dell’archiviazione e della manipolazione dei dati, a scopi industriali, una delle loro fonti di guadagno. Il risultato è rappresentato da una panoramica sul funzionamento e sulle tecniche di utilizzo dell’informazione, partendo dal dato più irrilevante fino ad arrivare ai database condivisi utilizzati, se non addirittura controllati, dalle più rinomate aziende nazionali ed internazionali.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Avec l’avènement des objets connectés, la bande passante nécessaire dépasse la capacité des interconnections électriques et interface sans fils dans les réseaux d’accès mais aussi dans les réseaux coeurs. Des systèmes photoniques haute capacité situés dans les réseaux d’accès utilisant la technologie radio sur fibre systèmes ont été proposés comme solution dans les réseaux sans fil de 5e générations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources réseau, le cloud computing et des services de stockage sont en cours de déploiement. De cette manière, les ressources centralisées pourraient être diffusées de façon dynamique comme l’utilisateur final le souhaite. Chaque échange nécessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des réseaux et de les définir de façon logicielle. Les amplificateurs à semi-conducteurs réflectifs (RSOA) sont une technologie clé au niveau des ONU(unité de communications optiques) dans les réseaux d’accès passif (PON) à fibres. Nous examinons ici la possibilité d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numérique sur un PON. La radio sur fibres peut être facilement réalisée grâce à l’insensibilité a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modèle OSI. Les interactions entre la couche physique et la commutation de réseaux peuvent être faites par l’ajout d’un contrôleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation réseau pourrait ainsi bénéficier d’une couche optique flexible grâce des ressources réseau dynamique et adaptée. Dans ce mémoire, nous étudions un système disposant d’une couche physique optique basé sur un RSOA. Celle-ci nous permet de façon simultanée un envoi de signaux sans fil et le transport de signaux numérique au format modulation tout ou rien (OOK) dans un système WDM(multiplexage en longueur d’onde)-PON. Le RSOA a été caractérisé pour montrer sa capacité à gérer une plage dynamique élevée du signal sans fil analogique. Ensuite, les signaux RF et IF du système de fibres sont comparés avec ses avantages et ses inconvénients. Finalement, nous réalisons de façon expérimentale une liaison point à point WDM utilisant la transmission en duplex intégral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mélangeurs RF dans la liaison montante, nous avons résolu le problème d’incompatibilité avec le système sans fil basé sur le TDD (multiplexage en temps duplexé).
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
The number of connected devices collecting and distributing real-world information through various systems, is expected to soar in the coming years. As the number of such connected devices grows, it becomes increasingly difficult to store and share all these new sources of information. Several context representation schemes try to standardize this information, but none of them have been widely adopted. In previous work we addressed this challenge, however our solution had some drawbacks: poor semantic extraction and scalability. In this paper we discuss ways to efficiently deal with representation schemes' diversity and propose a novel d-dimension organization model. Our evaluation shows that d-dimension model improves scalability and semantic extraction.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Resumo:
This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.