852 resultados para Closed-loop Control
Resumo:
The aim of this paper is to develop a new generation of extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. The variations in MFI are due to differences in the source of the recycled material used. The work describes how melt viscosity for specific extruder/die system is calculated in real time using the rheological properties of the materials, the pressure drop through the extruder die and the actual throughput measurements using a gravimetric loss-in-weight hopper feeder. A closed-loop controller is also developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. Such a system will improve processability of mixed MFI polymers may also reduce the risk of polymer melt degradation, reduce producing large volumes of scrap/waste and lead to improvement in product quality. The experimental results of real time viscosity measurement and control using a 38 mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work.
Resumo:
The aim of this paper is to develop a new extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. A closed-loop controller is developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. The experimental results of real time viscosity measurement and control using a 38mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work
Resumo:
Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.
Resumo:
Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
This paper is concerned with the design of robust feedback H~-control systems for the control of the upright posture of paraplegic persons standing. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralyzed calf muscles. Since the muscles acting as actuators in this setup show a significant degree of nonlinearity, a robust H~-control design is used. The design approach is implemented in experiments with a paraplegic subject. The results demonstrate good performance and closed loop stability over the whole range of operation.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Paraplegic subjects lack trunk stability due to the loss of voluntary muscle control.This leads to a restriction of the volume of bi-manual workspace available,and hence has a detrimental impact on activities of daily living. Electrical Stimulation of paralysed muscles can be used to stabilize the trunk, but has never been applied in closed loop for this purpose. This paper describes the development of two closed loop controllers(PID and LQR),and their experimental evaluation on a human subject. Advantages and disadvantages of the two are discussed,considering a potential use of this technology during daily activities.
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
The problem of signal tracking, in the presence of a disturbance signal in the plant, is solved using a zero-variation methodology. A state feedback controller is designed in order to minimise the H-2-norm of the closed-loop system, such that the effect of the disturbance is attenuated. Then, a state estimator is designed and the modification of the zeros is used to minimise the H-infinity-norm from the reference input signal to the error signal. The error is taken to be the difference between the reference and the output signals, thereby making it a tracking problem. The design is formulated in a linear matrix inequality framework, such that the optimal solution of the stated control problem is obtained. Practical examples illustrate the effectiveness of the proposed method.
Resumo:
This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.