969 resultados para Cloned
Resumo:
The expression of P2Z/P2X7 purinoceptor in different cell types is well established. This receptor is a member of the ionotropic P2X receptor family, which is composed by seven cloned receptor subtypes (P2X1 - P2X7). Interestingly, the P2Z/P2X7 has a unique feature of being linked to a non-selective pore which allows the passage of molecules up to 900 Da depending on the cell type. Early studies of P2Z/P2X7 purinoceptor were exclusively based on classical pharmacological studies but the recent tools of molecular biology have enriched the analysis of the receptor expression. The majority of assays and techniques chosen so far to study the expression of P2Z/P2X7 receptor explore directly or indirectly the effects of the opening of P2Z/P2X7 linked pore. In this review we describe the main techniques used to study the expression and functionality of P2Z/P2X7 receptor. Additionally, the increasing need and importance of a multifunctional analysis of P2Z/P2X7 expression based on flow cytometry technology is discussed, as well as the adoption of a more complete analysis of P2Z/P2X7 expression involving different techniques.
Resumo:
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.
Resumo:
Differential display technique was applied in order to identify transcripts which are present in axenic amastigotes but not in promastigotes of the Leishmania panamensis parasites. One of them was cloned and the sequence reveals an open reading frame of 364 amino acids (aprox. 40 kDa). The deduced protein is homologous to the serine/threonine protein kinases and specially to the mitogen activates protein kinases from eukaryotic species. Southern blot analysis suggest that this transcript, named lpmkh, is present in the genome of the parasite as a single copy gene. These results could imply that lpmkh could be involved in the differentiation process or the preservation of amastigotes in axenic conditions.
Resumo:
In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.
Resumo:
In the last decade, dengue fever (DF) in Brazil has been recognized as an important public health problem, and an increasing number of dengue haemorrhagic fever (DHF) cases have been reported since the introduction of dengue virus type 2 (DEN-2) into the country in 1990. In order to analyze the complete genome sequence of a DEN-2 Brazilian strain (BR64022/98), we designed primers to amplify contiguous segments of approximately 500 base pairs across the entire sequence of the viral genome. Twenty fragments amplified by reverse transcriptase-PCR were cloned, and the complete nucleotide and the deduced amino acid sequences were determined. This constitutes the first complete genetic characterization of a DEN-2 strain from Brazil. All amino acid changes differentiating strains related to the Asian/American-Asian genotype were observed in BR64022/98, indicating the Asiatic origin of the strain.
Resumo:
Simple sequence repeat anchored polymerase chain reaction amplification (SSR-PCR) is a genetic typing technique based on primers anchored at the 5' or 3' ends of microsatellites, at high primer annealing temperatures. This technique has already been used in studies of genetic variability of several organisms, using different primer designs. In order to conduct a detailed study of the SSR-PCR genomic targets, we cloned and sequenced 20 unique amplification products of two commonly used primers, CAA(CT)6 and (CA)8RY, using Biomphalaria glabrata genomic DNA as template. The sequences obtained were novel B. glabrata genomic sequences. It was observed that 15 clones contained microsatellites between priming sites. Out of 40 clones, seven contained complex sequence repetitions. One of the repeats that appeared in six of the amplified fragments generated a single band in Southern analysis, indicating that the sequence was not widespread in the genome. Most of the annealing sites for the CAA(CT)6 primer contained only the six repeats found within the primer sequence. In conclusion, SSR-PCR is a useful genotyping technique. However, the premise of the SSR-PCR technique, verified with the CAA(CT)6 primer, could not be supported since the amplification products did not result necessarily from microsatellite loci amplification.
Resumo:
Schistosomes undergo various morphological and metabolic changes during their development, reflected in a finely tuned regulation of protein and/or gene expression. The mechanisms involved in the control of gene expression during the development of the parasite are not understood. Two actin genes had been previously cloned and observed to be differentially expressed during the maturation of the parasite. The SmAct gene contains four putative cis-regulatory elements (TATA-, CCAAT-, E- and CArG-boxes). Our objective was to investigate in greater detail the expression pattern of two actin genes and verify if the binding of nuclear proteins to the promoter elements of SmAct correlated with the expression profile observed. We detected little variation in the expression of actin genes during the first seven days of schistosomula culture in vitro. However, we observed significantly higher levels of expression in males compared to female adults. CArG and CCAAT elements bound to a greater extent and formed distinct complexes with male in comparison to female nuclear extracts. In contrast, female extracts bound weakly to the E-box probe while no binding was observed with male extracts. Taken together these results describe cis-acting elements that appear to be involved in sexually regulated gene expression in Schistosoma mansoni.
Resumo:
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
Resumo:
To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.
Resumo:
The identification of all human chromosome 21 (HC21) genes is a necessary step in understanding the molecular pathogenesis of trisomy 21 (Down syndrome). The first analysis of the sequence of 21q included 127 previously characterized genes and predicted an additional 98 novel anonymous genes. Recently we evaluated the quality of this annotation by characterizing a set of HC21 open reading frames (C21orfs) identified by mapping spliced expressed sequence tags (ESTs) and predicted genes (PREDs), identified only in silico. This study underscored the limitations of in silico-only gene prediction, as many PREDs were incorrectly predicted. To refine the HC21 annotation, we have developed a reliable algorithm to extract and stringently map sequences that contain bona fide 3' transcript ends to the genome. We then created a specific 21q graphical display allowing an integrated view of the data that incorporates new ESTs as well as features such as CpG islands, repeats, and gene predictions. Using these tools we identified 27 new putative genes. To validate these, we sequenced previously cloned cDNAs and carried out RT-PCR, 5'- and 3'-RACE procedures, and comparative mapping. These approaches substantiated 19 new transcripts, thus increasing the HC21 gene count by 9.5%. These transcripts were likely not previously identified because they are small and encode small proteins. We also identified four transcriptional units that are spliced but contain no obvious open reading frame. The HC21 data presented here further emphasize that current gene prediction algorithms miss a substantial number of transcripts that nevertheless can be identified using a combination of experimental approaches and multiple refined algorithms.
Resumo:
To gain insight into the function and regulation of malonyl-CoA decarboxylase (MCD) we have cloned rat MCD cDNA from a differentiated insulin-secreting pancreatic beta-cell-line cDNA library. The full-length cDNA sequence shows 69% identity with the cDNA cloned previously from the goose uropygial gland, and predicts a 492 amino acid protein of 54.7 kDa. The open reading frame contains an N-terminal mitochondrial targeting sequence and the C-terminal part of the enzyme ends with a peroxisomal (Ser-Lys-Leu) targeting motif. Since the sequence does not reveal hydrophobic domains, MCD is most likely expressed in the mitochondrial matrix and inside the peroxisomes. A second methionine residue, located 3' of the mitochondrial presequence, might be the first amino acid of a putative cytosolic MCD, since the nucleotide sequence around it fits fairly well with a consensus Kozak site for translation initiation. However, primer extension detects the presence of only one transcript initiating upstream of the first ATG, indicating that the major, if not exclusive, transcript expressed in the pancreatic beta-cell encodes MCD with its mitochondrial presequence. The sequence also shows multiple possible sites of phosphorylation by casein kinase II and protein kinase C. mRNA tissue-distribution analysis indicates a transcript of 2.2 kb, and that the MCD gene is expressed over a wide range of rat tissues. The distribution of the enzyme shows a broad range of activities from very low in the brain to elevated in the liver and heart. The results provide the foundations for further studies of the role of MCD in lipid metabolism and metabolic signalling in various tissues.
Resumo:
SEN virus (SENV) is a circular, single stranded DNA virus that has been first characterized in the serum of a human immunodeficiency virus type 1 (HIV-1)-infected patient. Eight genotypes of SENV (A-H) have been identified and further recognized as variants of TT virus (TTV) in the family Circoviridae. Here we describe the first genomic characterization of a SENV isolate (5-A) from South America. Using 'universal' primers, able to amplify most, if not all, TTV/SENV genotypes, a segment of > 3 kb was amplified by polymerase chain reaction from the serum of an HIV-1 infected patient. The amplicon was cloned and a 3087-nucleotide sequence was determined, that showed a high (85%) homology with the sequence of the Italian isolate SENV-F. Proteins encoded by open reading frames (ORFs) 1 to 4 consisted of 758, 129, 276, and 267 amino acids, respectively. By phylogenetic analysis, isolate 5-A was classified into TTV genotype 19 (phylogenetic group 3), together with SENV-F and TTV isolate SAa-38.
Resumo:
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.
Resumo:
A total of 33 crude and cloned Trypanosoma rangeli stocks found as natural infections in human from Panama and other endemic areas of Central and South America were evaluated as producers of sialidase (SA) activity through the MU-NANA fluorescence test. Negative results were observed in 6 of the isolates: Panama (4), Honduras (1), and Brazil (1). In addition, an immunoblotting analysis confirm the presence of the SA antigen in these stocks without enzymatic activity. These findings must be considered in the interpretation of the biological significance of T. rangeli SA and in the proper characterization and identification of this parasite.
Resumo:
The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.