996 resultados para Clay. Grog. Manganese residue. Channel sediment. Paver ceramic
Resumo:
From X-ray mineralogical studies and chemical analyses of the whole rocks and the fine fractions (<2 µm) of ten to fifteen samples at each site of ODP Leg 124, two major sources were identified in the sedimentary components of the Celebes and Sulu basins: (1) a terrestrial and continental contribution; (2) a volcanic influx that gives way to well-defined volcanic units or to a dilute contamination, consisting of coarse-grained minerals (Plagioclase, pyroxene, olivine, spinel) or a smectitic-rich fraction produced by the alteration of volcanic glasses and ashes. The continental signature increases the amount of quartz in the rocks and the phyllitic association is complex: micas, kaolinite, disordered interstratified clay-minerals. The chemical compositions of the bulk rocks and the fractions <2 µm are more potassic and aluminum-rich. The volcanic imprint depends on the grain-size and chemical properties of the components. Ca/Na contents highly variable compared to the K content of the bulk composition are due to the presence of coarse-grained volcanic Plagioclase. The fractions <2 µm are more magnesian than in the continental regime. The diagenesis is revealed by the crystallization of zeolites, the fixation of magnesium into the smectites that depletes the pore fluids in this element. Smectitization of the disordered interstratified clay minerals enriches the alkalinity of the pore fluids. Some deep formations of the Sulu Basin are affected by a thermal event, but no thermal event was recognized in the Celebes Basin.
Resumo:
Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.
Resumo:
Results of mineralogical and geochemical investigations of post-Middle Jurassic deposits of the Atlantic Ocean are based on materials of the Deep Sea Drilling Project. Comparative characteristics of primary matter for ''black shales'' are given. Exhalative origin of heavy metal accumulation in near-axial sedimentary deeps of the Mid-Atlantic Ridge (23°N) are shown. History of post-Middle Jurassic sedimentation is considered on the base of clay mineral-, clastic component-, trace and rare- chemical element studies.
Resumo:
A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.
Resumo:
Sediments recovered from Site 765 can be divided into seven mineral associations, based on differences in clay mineralogy. These clay mineral associations correlate with the lithologic units and reflect the rift-to-drift history of the passive Australian margin. In general, the Lower to mid-Cretaceous sediments represent altered volcanic material and detrital aluminosilicates that were deposited during the early formation of the Argo Basin. The predominant clay mineral is randomly interstratified illite/smectite (I/S) that contains less than 10% illite layers. The transformation of smectite to illite is suggested by an increase in the percentage of illite layers in the basal sediments (from <10% to 40%) that corresponds to the silica transformation of opal-CT to quartz. This mixed-layered illite/smectite has an average composition of (K0.14 Na0.29 C0.07)(Al0.88 Mg0.43 Fe0.61 Ti0.06)(Si3.88 Al0.12)(O)10(OH)2. The highly smectitic composition of the I/S and its association with bentonite layers and zeolite minerals suggest that much of the I/S was derived from the alteration of volcanic material. The condensed middle to Upper Cretaceous sediments consist of palygorskite and detrital I/S that contains 30% to 60% illite layers. The condensed Paleogene sediments contain no palygorskite and are dominated by detrital clay minerals or by highly smectitic I/S associated with bentonite layers and zeolite minerals. The overlying, rapidly deposited Neogene clayey calcareous turbidites consist of three distinct clay mineral associations. Middle Miocene sediments contain palygorskite, kaolinite, and a tentatively identified mixed-layered illite/smectite/chlorite (I/S/C) or saponite. Upper Miocene sediments contain abundant sepiolite and kaolinite and lesser amounts of detrital I/S. Detrital I/S and kaolinite dominate the clay mineralogy of Pliocene and Pleistocene sediments. The fibrous, magnesium-rich clay minerals sepiolite and palygorskite appear to be authigenic and occur intimately associated with authigenic dolomite. The magnesium required to form these Mg-rich minerals was supplied by diffusion from the overlying seawater, and silica was supplied by the dissolution of associated biogenic silica.