878 resultados para Civilization, Western.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the influence of the spatial and temporal variability of upwelling intensity and the associated biological productivity observed during different phases of summer monsoon along the southwestern continental margin of India (SWCMI) on the delta C-13 and delta O-18 of the inorganic biogenic carbonate shells was investigated. Multispecies benthic bivalve shells (1-5 mm) separated from ten surface sediment samples of SWCMI (off 12 degrees N, 10 degrees N and 9 degrees N) collected during the onset (OSM) and peak (PSM) phase of the summer monsoon of 2009 were analysed for delta C-13 and delta O-18. Sea surface temperature along the study region indicates prominent upwelling in PSM than in OSM. A comparison of analytical and predicted values for delta O-18 in the bivalve shells confirmed their in situ origin during both the sampling periods. During PSM, the delta C-13 values in the benthic bivalve shells were more depleted in C-13 than during OSM which recorded lower values of delta C-13 in dissolved inorganic carbon of bottom waters expected in the study region in PSM due to the upwelled waters, high surface productivity and the associated high degradation of the organic matter in the subsurface and bottom waters. However, this depletion of delta C-13 was not observed in benthic bivalve shells obtained from 10 degrees N, since it is influenced by high export fluxes of carbon from the Cochin estuary since early monsoon months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Glyphochloa (Poaceae: Panicoideae: Andropogoneae: Rottboellinae) is endemic to peninsular India and is distributed on lateritic plateaus of low and high altitude in and around Western Ghats and the Malabar Coast. The genus presumably originated and diversified in the Western Ghats. Species relationships in the genus Glyphochloa were deduced here based on molecular phylogenies inferred using nuclear ribosomal ITS sequences and plastid intergenic spacer regions (atpB-rbcL, trnT-trnL, trnL-trnF), and new observations were made of spikelet morphology, caryopsis morphology and meiotic chromosome counts. We observed two distinct clades of Glyphochloa s.l. One of these (group I') includes Ophiuros bombaiensis, and is characterized by a single-awned lower glume and a base chromosome number of 6; it grows in low elevation coastal areas. The other clade (group II') has a double-awned lower glume, a base chromosome number of 7, and is restricted to higher elevation lateritic plateaus; G. ratnagirica may belong to the group II clade, or may be a third distinct lineage in the genus. A sister-group relationship between group I and II taxa (with or without G. ratnagirica) is not well supported, although the genus is recovered as monophyletic in shortest trees inferred using ITS or concatenated plastid data. We present a key to species of Glyphochloa and make a new combination for O. bombaiensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an identification guide for cetaceans (whales, dolphins, and porpoises). It was designed to assist laypersons in identifying cetaceans encountered in the western North Atlantic Ocean and was intended for use by ongoing cetacean observer programs. This publication includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices cover tags used on cetacean species; how to record and report cetacean observations at see and for stranded cetaceans; and a list of contacts for reporting cetacean strandings. (Document pdf contains 183 pages - file takes considerable time to open)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Geological Survey was requested in 1967 to locate areas that would most likely yield the greatest quantities of the best quality water to satisfy the projected municipal needs of western Collier County. The investigation included the following phases: (1) evaluation of existing data; (2) determination of the hydrologic and geologic characteristics of the subsurface materials; (3) collection of miscellaneous discharge data in the inland canal complex and interpretation of the data; and (4) determination of the quality of water. (PDF has 40 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family Priacanthidae contains four genera and four species that occur in the western central North Atlantic (Starnes, 1988). Pristigenys alta is distributed in the Caribbean, Gulf of Mexico and along the east coast of North America. Although juveniles have been reported from as far north as southern New England waters, adults are not reported north of Cape Hatteras, NC. Priacanthus arenatus is distributed in tropical and tropically influenced areas of the western central North Atlantic in insular and continental shelf waters. Adult P. arenatus are distributed north to North Carolina and Bermuda, juveniles have been collected as far north as Nova Scotia. Cookeolus japonicus and Heteropriacanthus cruentatus are circumglobally distributed species and are both common in insular habitats. In the western central North Atlantic, C. japonicus ranges from New Jersey to Argentina; H. cruentatus from New Jersey and northern Gulf of Mexico to southern Brazil (Starnes, 1988). (PDF contains 6 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family Gerreidae contains four genera and 13 species that occur in the western central North Atlantic. Adult gerreids are small to medium size fishes that are abundant in coastal waters, bays, and estuaries in tropical and warm temperate regions and sometimes occur in freshwaters. They are generally associate~ with grassy or open bottoms, but not with reefs. Gerreids are silvery fishes, with deeply forked tails, and extremely protrusible mouth that points downward when protracted. They apparently feed on bottom-dwelling organisms and at least one species (Eucinostomus gula) shows a distinct transition, during the juvenile period, from a planktivore (exclusively copepods) to a carnivore that includes a diet of almost solely polychaetes (Carr & Adams, 1973; Robins and Ray, 1987; Murdy et al., 1997). (PDF contains 10 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)