320 resultados para Cilindro rotativo
Resumo:
Estudos experimentais evidenciam o potencial promissor das células da fração mononuclear da medula óssea (CMN-MO) no tratamento de modelos de isquemia cerebral. Sabe-se que as CMN-MOs são sensíveis à modificações microambientais, tal qual aquelas induzidas por uma isquemia, como eventos associados à inflamação. Contudo, pouco se conhece a respeito da biodistribuição e sobrevida dessas células no tecido nervoso pós-lesão. Objetiva-se investigar se a sobrevivência e a disseminação das CMN-MOs são influenciadas pela resposta inflamatória após isquemia estriatal. Parecer CEPAE, protocolo nº 073/12. Transplante heterólogo (5x105 de CMN-MOs) no estriado de ratos Wistar, agrupados entre controles não-tratados (IST) e falso-operado (FO) e tratados (ITCM), perfundidos em 1, 3, 7 e 28 dias. CMN-MO foram impregnadas com Nanocristais Qdot para posterior identificação por microscopia de fluorescência no tecido do receptor. Coloração, por violeta de cresila, e imunoistoquímica básica (IBA1 e ED1) foram aplicadas para análise histopatológica do tecido em microscopia de luz. Testes neurocomportamentais (teste de remoção do adesivo e teste do cilindro) foram realizados para aferir a resposta dos grupos às intervenções. Os achados histopatológicos evidenciam a eficiência do modelo experimental de indução isquêmica em reproduzir a lesão no estriado dorsolateral. O infiltrado celular no grupo IST marca a resposta inflamatória, posteriormente confirmada por imunoistoquímica para ED1 e IBA1; o infiltrado celular no grupo ITCM, evidencia a permanência das CMN-MO em todas as sobrevidas estudadas. O perfil de perda por morte das CMN-MO transplantadas no sítio de lesão é semelhante entre os grupos ITCM e FO, contudo, evidencia que resposta inflamatória do receptor causa maior decaimento do montante celular no grupo ITCM. Procedimentos de infusão celular mais refinados ou automatizados podem melhorar a sensibilidade dos testes comportamentais para discriminar a evolução entre os grupos estudados. Conclui-se que a alteração do microambiente pós-isquemia cria condições que determina a dispersão e a sobrevivência das CMN-MO. Outras análises de imunoistoquímicas podem apontar resultados quanto ao perfil microglial presentes nas sobrevidas estudadas e o grau de imunomodulação pelo estudo da dinâmica das citocinas inflamatórias produzidas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The cylinder head contains the combustion chamber for the air-fuel mixture and the intake and exhaust valves, the valve guide and the valve seat. The cylinder head also is a support for the camshaft and valve rocker. The holes where the spark plugs are connected are designed to fit the better place in the combustion chamber. The cylinder heads often are manufactured using materials such as aluminum and cast iron. The cooling fins located in the outside of the cylinder head are designed for a good heat transfer and therefore their dimensions and positioning are important. This work aims the calculation for a cylinder head to be installed in a 400 cc displacement, gasoline powered, four stroke, single cylinder engine. According to the displacement it will be analyzed the combustion chamber, the intake and exhaust valves, as well as the camshaft and rocker arms. This also a work to help to accomplish the design of a single cylinder engine, where the alternatives parts, cylinder block and crankcase are all already machined and assembled in this campus
Resumo:
Revolving machines are among the most used equipment in general industry and therefore expenditures on this equipment class are a significant portion of the total amount spent by the company. If there is an unscheduled stop of some of this equipment, industrial plants can lose huge amounts of money caused by interrupted production and parts delay. Others may increase significantly maintenance costs due to consequences elsewhere not affected before. Even plant and people safety can be in danger if there is an operation interruption without a backup system start. This work is focused on a rotating system case study which is monitored by vibration analysis that shows that is possible to determine when is the most appropriate time for equipment intervention without any reliability loss just by using a simple and cheap system which is not much used because professionals are not aware to its utility. Industrial facilities were evaluated by fail detection and historical analysis in some equipment in order to show feasibility of vibration analysis through a before-during-after process. The plant evaluated is part of a chemical multinational located in Guaratinguetá-SP. At this time, that plant had around 650 critical equipment monthly monitored and no unscheduled shutdown was registered in one year period due to equipment monitoring
Resumo:
Human evolution has always been linked to personal or group needs. This statement is based on observations of the day to day. With time, we can now choose from among many excellent techniques and materials that can be employed in the construction of this part of the machinery so important to the functionality of machines and equipment. When we look at a machine, we see that this is usually designed by combining a set of pre-determined in your project. Among the many pieces that we can highlight one of them is of fundamental importance, the gear. Gears are an example of the mechanical devices used by the older man, and are currently the most important components in the transmission technique. This is responsible for transmitting rotary motion from one shaft to another. Gears are one of the best among the various means available for the transmission of motion. Gears are the most important components of modern technique of transmission. The main purpose of a transmission gear is precisely transmit torque and speed. The requirements have increased significantly due to pollution and energy conservation. Nowadays, gear transmissions are required to transmit high strength through all his life together with the high demand on performance and sound properties. An optimal design for the gear you need a set of the most modern fabrication machines and cutting tools. In the following work is studied on the manufacture of gears, making the monitoring of a case study of the try out the installation of a gear grinding machine
Resumo:
The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field
Resumo:
The studies related to research on new antimicrobial products have received special attention from researchers, especially given the emergence of microbial strains resistant to conventional antimicrobials. Thus, the present study was aimed to test the antimicrobial action of hydro-alcoholic extracts of plants collected in Cerrado region of Botucatu, following the species: Achyrocline satureioides (Lam) DC (macela), Stryphnodendron adstringens (Mart) Coville (barbatimão), Miconia rubiginosa (Bonpl.) DC (quaresma-branca), Davilla elliptica A. St-Hil (lixinha), Siparuna guianensis (negramina) e Solanum lycocarpum A.St-Hil (lobeira). The plants were always collected in the morning, in areas near the town of Botucatu, and extracts were prepared using a solvent such as methanol 70% from materials dried (50°C) and ground into mill knives. The extraction was performed for 48 hours at refrigerator temperature, followed by filtration, removal of methanol solvent in a rotary evaporator, determination of the dry weight of the extracts (mg / mL) and phytochemical analysis of the same. The sensitivity tests for 10 S. aureus, 11 E. coli and 11 P. aeruginosa, isolated from human clinical cases were performed by diluting volumes of the extracts in Mueller Hinton Agar (MHA) and determination of minimum inhibitory concentration (MIC) (mg / mL). According to the results and statistical analysis, it was found that depending on the bacteria tested, and in descending order of antibacterial activity for S. aureus: Lixinha sheet > Barbatimão sheet > Quaresma-Branca > Macela > Lixinha fruit > Barbatimão shell > Lobeira > Negramina; E. coli: Lixinha sheet > Barbatimão sheet > Lixinha fruit = barbatimão peel > Quaresma-Branca > Macela = Lobeira > Negramina and P. aeruginosa: Lixinha leaf > Barbatimão bark > Barbatimão leaf > Lixinha fruit > Macela > Lobeira > Quaresma - Branca = Negramina... (Complete abstract click electronic access below)
Resumo:
The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers