1000 resultados para Cibicidoides cf. wuellerstorfi, d13C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk carbon isotope records are an effective chemostratigraphic tool for the middle Miocene because of the large and systematic variation in first-order d13C signals. Bulk d13C measurements support the presence of a hiatus at 305 mbsf in Hole 805B (latest middle Miocene), provisionally located while on board ship using biostratigraphic and magnetostratigraphic events. Records at Holes 805B and 806B show the middle Miocene Monterey carbon isotope excursion although the record at Hole 806B is apparently more stratigraphically continuous. Detailed analysis of multispecies foraminiferal carbon isotope records during the middle Miocene ("Monterey excursion") segment at Hole 806B support the assertion that this carbon isotope excursion comprises mainly between-reservoir effects. The benthic d18O data increase after 15.3 Ma, which we suggest corresponds to the mid-Miocene cooling step/ice volume increase of other authors. Planktonic foraminiferal d18O evidence exists for steepening of the thermocline at 17.4 Ma. A second-order d13C excursion superimposed at 13.8 Ma on the first-order Monterey excursion is associated with a second-order negative d18O excursion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic measurements of G. sacculifer and C. wuellerstorfi in a core from the western equatorial Atlantic imply that there are parallel, suborbital oscillations in surface water hydrography and deep water circulation occurring during oxygen isotope stages 2 and 3. Low values of G. sacculifer delta18O accompany high values of C. wuellerstorfi delta13C, linking warmer sea surface temperatures (SSTs) in the tropics with increased production of lower North Atlantic Deep Water (NADW). The amplitude of the delta18O oscillations is 0.6 per mil (or 2°-3°C), which is superimposed on a glacial/interglacial amplitude of about 2.1per mil. Using the G. sacculifer delta18O data, we calculate that surface waters were colder during stage 2 than calculated by CLIMAP [1976, 1981]. The longer-period (>2 kyr) oscillations in air temperature recorded in the Greenland and Antarctic ice cores appear to correlate with oscillations in sea surface temperature in the equatorial Atlantic. The magnitude of these oscillations in tropical SST is too large to have resulted from changes in meridional heat transport caused by the global conveyor alone. The apparent synchroneity of equatorial SST and polar air temperature changes, as well as the amplitude of the SST changes at the equator, are consistent with the climate effects expected from changes in the atmosphere's greenhouse gas content (H2Ovapor, CO2, and CH4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five delta13C records from the deep ocean, extending back to 1.3 Ma, were examined in order to constrain changes in mean ocean carbon isotope composition and thermohaline circulation over the 41- to 100-ka climate transition. These data show that significant perturbations in mean ocean carbon chemistry were associated with the mid-Pleistocene climate transition. Notable features of the last 1.3 Myr are (1) a pronounced ~0.3? decrease in mean ocean delta13C between 0.9 and 1.0 Myr, followed by a return to pre-1.0 Ma values by 400 ka B.P., which we propose was due to the onetime addition of isotopically depleted terrestrial carbon to the ocean, possibly associated with an increase in global aridity (and decrease in the size of the biosphere) across the 41- to 100-ka transition; (2) no change in the Atlantic-Pacific (A-P) delta13C gradient over the last 1.3 Myr, suggesting no change in mean ocean nutrient content accompanied the addition of light carbon; and (3) stronger vertical nutrient fractionation in the North Atlantic in the middle Pleistocene between sites 607 and 552, suggesting weaker North Atlantic Deep Water formation at this time relative to the early and late Pleistocene. We also find evidence for a more pronounced deep recirculation gyre in the western North Atlantic basin in the early Brunhes, as evidenced by "aging" of deep northern basin water (site 607) relative to deep water in the equatorial Atlantic (site 664).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miocene to Recent species of planktic foraminifera in the Globorotalia (Globoconella) lineage evolved entirely within the thermocline. All species are most abundant within subtropical-temperate watermasses throughout their history. The near stasis in distribution within the thermocline and the subtropical convergence suggests the major morphological changes in Globorotalia (Globoconella) may have occurred through habitat subdivision rather than by vicariant shifts into new watermasses. At the Rio Grande Rise, in the South Atlantic, modern G. inflata is 0.66-0.84? more positive for delta18O than the most enriched coexisting Globigerinoides sacculifer and probably grows in the mid thermocline deeper than 325 m. All extinct globoconellid species have mean delta18O ratios 0.5-0.8? more positive than Globigerinoides trilobus and G. sacculifer and probably lived within the thermocline as well. Major events in skeletal evolution are poorly correlated with changes in delta18O in this group. These include evolutionary transitions to compressed, smooth-walled tests and acquisition of keels. In addition, morphological reversals from the umbilically-inflated G. conomiozea to biconvex G. pliozea and to unkeeled G. puncticulata occur in the absence of changes in delta18O signature. Instead, the ranges of delta18O between different species almost completely overlap once corrected for temporal changes in delta18O of sea water. Foraminifera morphologies have been widely considered to evolve in response to changes in watermasses or depth habitats. However, the variety of skeletal shapes in the globoconellid lineage apparently are not adaptations to a progressive radiation from the surface mixed layer into deeper waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method for the quantitative reconstruction of upper ocean flows for during times in the past. For the warm (T>5°C) surface ocean, density can be accurately reconstructed from calcite precipitated in equilibrium with seawater, as both of these properties increase with decreasing temperature and increasing salinity. Vertical density profiles can be reconstructed from the oxygen isotopic composition of benthic foraminifera. The net volume transport between two vertical density profiles can be calculated using the geostrophic method. Using benthic foraminifera from surface sediment samples from either side of the Florida Straits (Florida Keys and Little Bahama Bank), we reconstruct two vertical density profiles and calculate a volume transport of 32 Sv using this method. This agrees well with estimates from physical oceanographic methods of 30-32 Sv for the mean annual volume transport. We explore the sensitivity of this technique to various changes in the relationship between temperature and salinity as well as salinity and the oxygen isotopic composition of seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine whether or not a relationship exists between the late Miocene carbon isotope shift (~7.6-6.6 Ma) and marine productivity at four sites from the Indian and Pacific Oceans (Ocean Drilling Program Sites 721, 1146, 1172, and 846). We use a multiproxy approach based on benthic foraminiferal accumulation rates, elemental ratios, and dissolution indices, and we compare these data to benthic foraminiferal d13C values measured on the same samples. Although some of these sites have been targeted previously in studies of either the late Miocene/early Pliocene "biogenic bloom" (Sites 721 and 846) or the late Miocene carbon isotope shift (Site 1172), our records are the first to establish paired proxy records of carbon isotopes and paleoproductivity allowing a direct assessment of a potential link. Our results indicate that at all sites, productivity increased sometime during the d13C shift; at three sites (721, 1146, and 846), productivity increased at the beginning of the shift. The correlation coefficients derived from linear regression between micropaleontologically derived productivity and foraminiferal d13C values are relatively high during the time interval containing the late Miocene d13C shift (and statistically significant at three of the sites). Carbon flux and isotope mass balance considerations illustrate that transfer of organic matter between the terrestrial and marine reservoirs together with enhanced oceanic upwelling best approximates observed changes in carbon isotope records and paleoproductivity. We note that long-term trend in the Site 846 paleoproductivity record can be correlated to the long-term trend in the Site 848 eolian flux reconstructions of Hovan (1995, doi:10.2973/odp.proc.sr.138.132.1995) hinting at a link between strengthened wind regime and productivity during the late Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope data are presented for Sites 1014 (Tanner Basin, 1176 m) and 1020 (Gorda Ridge, 3040 m) to constrain past changes in Pacific deep- and intermediate-water nutrient chemistry associated with the onset of large-amplitude 100-k.y. climate cycles after ~900 ka. The Site 1014 data were based on analyses of separate species of Cibicidoides, whereas only Cibicidoides wuellerstorfi was used to generate the Site 1020 record. The present data span 380-920 and 620-950 ka at Sites 1014 and 1020, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three sites, drilled during Ocean Drilling Program (ODP) Leg 167, were chosen for detailed late Pleistocene paleoceanographic studies of intermediate water along the California margin. These sites are Site 1011 (Animal Basin, 31°17'N, 117°38'W, 2033 m water depth, 1600 m sill depth), Site 1012 (East Cortez Basin, 32°17'N, 118°23'W, 1783 m water depth, 1415 m sill depth), and Site 1018 (Guide Seamount, 36°59'N, 123°17'W, 2476 m water depth). Here we present carbon and oxygen isotopic measurements of benthic foraminifers from these three sites. We made 135 measurements from Site 1011, 387 measurements from Site 1012, and 231 measurements from Site 1018. This data report includes an explanation of the methods used to generate these isotopic records and the age models for each site. Detailed paleoceanographic interpretations of the isotopic records are currently under way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios in Eocene and Oligocene planktonic and benthic foraminifera have been investigated from Atlantic, Indian, and Pacific Ocean locations. The major changes in Eocene-Oligocene benthic foraminiferal oxygen isotopes were enrichment of up to 1 per mil in 18O associated with the middle/late Eocene boundary and the Eocene/Oligocene boundary at locations which range from 1- to 4-km paleodepth. Although the synchronous Eocene-Oligocene 18O enrichment began in the latest Eocene, most of the change occurred in the earliest Oligocene. The earliest Oligocene enrichment in 18O is always larger in benthic foraminifera than in surface-dwelling planktonic foraminifera, a condition that indicates a combination of deep-water cooling and increased ice volume. Planktonic foraminiferal d18O does not increase across the middle/late Eocene boundary at our one site with the most complete record (Deep Sea Drilling Project Site 363, Walvis Ridge). This pattern suggests that benthic foraminiferal d18O increased 40 m.y. ago because of increased density of deep waters, probably as a result of cooling, although glaciation cannot be ruled out without more data. Stable isotope data are averaged for late Eocene and earliest Oligocene time intervals to evaluate paleoceanographic change. Average d18O of benthic foraminifera increased by 0.64 per mil from the late Eocene to the early Oligocene d18O maximum, whereas the average increase for planktonic foraminifera was 0.52 per mil. This similarity suggests that the Eocene/Oligocene boundary d18O increase was caused primarily by increased continental glaciation, coupled with deep sea cooling by as much as 2°C at some sites. Average d18O of surface-dwelling planktonic foraminifera from 14 upper Eocene and 17 lower Oligocene locations, when plotted versus paleo-latitude, reveals no change in the latitudinal d18O gradient. The Oligocene data are offset by ~0.45 per mil, also believed to reflect increased continental glaciation. At present, there are too few deep sea sequences from high latitude locations to resolve an increase in the oceanic temperature gradient from Eocene to Oligocene time using oxygen isotopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratio measurements are presented for Globigerinoides ruber and for benthic species (mainly Uvigerina spp.) in the Pleistocene and uppermost Pliocene section of ODP Hole 677A in the Panama Basin. This provides the best available continuous Pleistocene stable isotope records from any location, fully justifying the recoring of DSDP Site 504. Oxygen isotope stage 22 (age about 0.85 Ma) was of similar magnitude to the most extensive glacials of the Brunhes and constitutes a logical base for the middle Pleistocene. Oxygen isotope stages as defined by Ruddiman et al. (1986, doi:10.1016/0012-821X(86)90024-5) and by Raymo et al. (1989, doi:10.1029/PA004i004p00413) back to stage 104 are recognized. Although the internationally agreed base of the Quaternary at or near stage 62 (about 1.6 Ma) is not marked by a major isotopic event, it does approximate the base of a regime characterized by highly regular 41,000-yr climate cycles. The records at Site 677 are ideal for time-series analyses and will permit a new attempt to develop a chronology for the early Pleistocene based on tuning to the orbital frequencies. The carbon isotope records also appear to contain considerable variance at orbital frequencies throughout the sequence analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out oxygen and carbon isotope studies on monospecific foraminifer samples from DSDP Sites 522, 523, and 524 of Leg 73 in the central South Atlantic Ocean. The oxygen isotope ratios show a warming of 2 to 3 °C in bottom water and 5°C in surface water during the Paleocene and early Eocene. The carbon isotope values indicate strong upwelling during the early Eocene. The 1% increase in the d18O values of benthic and planktonic foraminifers at Site 523 in the later middle Eocene we ascribe to changes in the pattern of the evaporation and precipitation. The changes may be due to the worldwide Lutetian transgression. The oxygen ratios for the benthic and planktonic foraminifers indicate a cooling at the Eocene/Oligocene transition. The maximum temperature drop (5°C for benthic and 3°C for planktonic foraminifers) is recorded slightly beyond the Eocene/Oligocene boundary and took place over an interval of about 100,000 yr. The pattern of currents in the Southern Hemisphere was mainly structured by a precursor of the subtropical convergence during the Paleocene to late Eocene. The cooling at the Eocene/Oligocene transition led to drastic changes in the circulation pattern, and a precursor of the Antarctic convergence evolved.