940 resultados para Chronic myeloid leukemia
Resumo:
This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.
Resumo:
We have generated a physical map of human chromosome bands 20q11.2-20q13.1, a region containing a gene involved in the development of one form of early-onset, non-insulin-dependent diabetes mellitus, MODY1, as well as a putative myeloid tumor suppressor gene. The yeast artificial chromosome contig consists of 71 clones onto which 71 markers, including 20 genes, 5 expressed sequence tags, 32 simple tandem repeat DNA polymorphisms, and 14 sequence-tagged sites have been ordered. This region spans about 18 Mb, which represents about 40% of the physical length of 20q. Using this physical map, we have refined the location of MODY1 to a 13-centimorgan interval (approximately equal to 7 Mb) between D20S169 and D20S176. The myeloid tumor suppressor gene was localized to an 18-centimorgan interval (approximately equal to 13 Mb) between RPN2 and D20S17. This physical map will facilitate the isolation of MODY1 and the myeloid tumor suppressor gene.
Resumo:
The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.
Resumo:
Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.
Resumo:
The EVI1 gene, located at chromosome band 3q26, is overexpressed in some myeloid leukemia patients with breakpoints either 5' of the gene in the t(3;3)(q21;q26) or 3' of the gene in the inv(3)(q21q26). EVI1 is also expressed as part of a fusion transcript with the transcription factor AML1 in the t(3;21)(q26;q22), associated with myeloid leukemia. In cells with t(3;21), additional fusion transcripts are AML1-MDS1 and AML1-MDS1-EVI1. MDS1 is located at 3q26 170-400 kb upstream (telomeric) of EVI1 in the chromosomal region in which some of the breakpoints 5' of EVI1 have been mapped. MDS1 has been identified as a single gene as well as a previously unreported exon(s) of EVI1 We have analyzed the relationship between MDS1 and EVI1 to determine whether they are two separate genes. In this report, we present evidence indicating that MDS1 exists in normal tissues both as a unique transcript and as a normal fusion transcript with EVI1, with an additional 188 codons at the 5' end of the previously reported EVI1 open reading frame. This additional region has about 40% homology at the amino acid level with the PR domain of the retinoblastoma-interacting zinc-finger protein RIZ. These results are important in view of the fact that EVI1 and MDS1 are involved in leukemia associated with chromosomal translocation breakpoints in the region between these genes.
Resumo:
Increased plasma fibrinogen levels are associated with shortened overall survival (OS) in some solid tumor types. In contrast, the prognostic significance of varying fibrinogen levels in acute myeloid leukemia (AML) at diagnosis is unknown. In this study, we assessed the prognostic significance of fibrinogen levels in AML patients. In a comprehensive retrospective single-center study, we determined the survival rates of 375 consecutive AML patients undergoing at least one cycle of intensive chemotherapy induction treatment. Patients were dichotomized between low (<4.1 g/L) and high fibrinogen levels (≥4.1 g/L) at diagnosis of AML before initiation of treatment. Subsequently, quartile ranges were applied to analyze the association of varying fibrinogen levels on survival. We observed that the rates of complete remission, early death, and admission to intensive care unit were equal in the low versus high fibrinogen group. However, OS was significantly better in the low fibrinogen group (27.3 vs 13.5 months; p = 0.0009) as well as progression-free survival (12.3 vs 7.8 months; p = 0.0076). This survival difference remained significant in the multivariate analysis (p = 0.003). Assessing quartiles of fibrinogen values, we further confirmed this observation. Our data suggest that high fibrinogen levels at diagnosis of AML are associated with unfavorable OS and progression-free survival but not with increased mortality during induction treatment.
Resumo:
Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P
Resumo:
There are a number of observations that suggest the dsRNA-activated protein kinase, PKR, may play an active role in formation and maintenance of leukemia, including nonrandom chromosomal deletions in acute leukemia as well as truncations and deletions of the PKR gene in some leukemia cell lines. However, there is little direct evidence from patient material that this is so. Here we show that full-length PKR is present but not active in 21 of 28 patient samples from B-cell chronic lymphocytic leukemia (B-CLL). PKR from these patients was unable to auto-activate or phosphorylate substrates but was able to bind dsRNA. Furthermore, the lack of PKR activation was not due to differing levels of the PKR activator, PACT nor of the PKR inhibitor, p58(IPK). We compared PKR status with clinical parameters and disease staging. No differences were found between the 2 groups in terms of staging (modified Rai or Binet), age, CD38 status, p53 status, 11q23 deletion status or CEP12 deletion status. However, there was a significant correlation between deletion in 13q14.3 and lack of PKR activity. We show that B-CLL cells appear to contain a soluble inhibitor of PKR, as lysates from cells lacking PKR activity were able to inhibit exogenous PKR in mixing experiments. Finally, we show suppression of PKR activity was still present following ultrafilitration through a 10,000 Da cutoff filter but was lost upon extraction with phenol/chloroform or by high salt washing. This data suggests loss of PKR activity may contribute to the formation and/or maintenance of CLL. (C) 2004 Wiley-Liss, Inc.
Resumo:
The BCR-ABL tyrosine kinase inhibitor imatinib has greatly improved the outcome for patients with chronic myeloid leukaemia (CML). Unfortunately, mutations causing resistance to imatinib are leading to relapses in some patients. In addition to inhibiting the wild-type BCR-ABL, BMS-354825 inhibited 14 of 15 BCR-ABL mutants. BMS-354825 treatment of immunodeficient mice prevented the progression of the disease in mice treated with the most clinical common imatinib-resistant mutant Met351Thr. The safety and efficacy of BMS-354825 is presently being evaluated in a phase I/II clinical trial in CML patients with imatinib resistance. The frequency of clinical use of SMS-3548125 in CML patients will depend on its efficacy/safety profile in clinical trial.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder often associated with dismal overall survival. The clinical diversity of AML is reflected in the range of recurrent somatic mutations in several genes, many of which have a prognostic and therapeutic value. Targeted next-generation sequencing (NGS) of these genes has the potential for translation into clinical practice. In order to assess this potential, an inter-laboratory evaluation of a commercially available AML gene panel across three diagnostic centres in the UK and Ireland was performed.
METHODS: DNA from six AML patient samples was distributed to each centre and processed using a standardised workflow, including a common sequencing platform, sequencing chips and bioinformatics pipeline. A duplicate sample in each centre was run to assess inter- and intra-laboratory performance.
RESULTS: An average sample read depth of 2725X (range 629-5600) was achieved using six samples per chip, with some variability observed in the depth of coverage generated for individual samples and between centres. A total of 16 somatic mutations were detected in the six AML samples, with a mean of 2.7 mutations per sample (range 1-4) representing nine genes on the panel. 15/16 mutations were identified by all three centres. Allelic frequencies of the mutations ranged from 5.6 to 53.3 % (median 44.4 %), with a high level of concordance of these frequencies between centres, for mutations detected.
CONCLUSION: In this inter-laboratory comparison, a high concordance, reproducibility and robustness was demonstrated using a commercially available NGS AML gene panel and platform.