990 resultados para Chlorophyll Fluorescence, Photosystem II, Nonphotochemical Quenching, Desiccation Tolerance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K a = 1.8 ± 0.2 × 105/M) and ATP (Ka = 1.9 ± 0.4 × 103/M). To build the other sequences, changes in the Arg136 residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (Ka = 1.3 ± 0.1 × 105/M and 1.0 ± 0.2 × 105/M for Ser and His, respectively). No binding was observed for the change Arg136 to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg2+ appears to modulate the binding process. Our results demonstrate the crucial role of Arg 136 residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions. Copyright Blackwell Munksgaard, 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three freshwater Rhodophyta species (Audouinella eugenea, A. hermannii and Compsopogon coeruleus) were tested as to their responses (photosynthesis, growth and pigment concentration) to two irradiances (low light, LL, 65 μmol m -2 s-1 and high light, HL, 300 μmol m-2 s-1) and two periods (short time, ST, 4 d, and long time, LT, 28 d). Higher growth rates were consistently observed at LL but significant differences were observed only for A. hermannii. Higher values of photoinhibition at LL were found for the three species, which is consistent with the dynamic photoinhibition as a reversible photoprotective mechanism against high irradiance. Light-induced decreases of effective quantum yield (EQY) were observed in the three species consisting of pronounced decreases from LL to HL. Rapid increases of non-photochemical quenching (NPQ) were observed mainly at LL, indicating energy dissipation by reaction centers. Results revealed distinct photoacclimation strategies to deal with high irradiances: the two Audouinella species had only characteristics of shade-adapted algae: acclimation by changes of size of photosy stem units (PSU) under LT and by PSU number under ST; higher values of the photoinhibition parameter (β) and NPQ, and lower values of EQY at LL; higher recovery capacity of potential quantum yield (PQY) at LL and under ST; highly significant positive correlation of electron transport rate (ETR) with NPQ. In addition, C. coeruleus mixed some characteristics of sun-adapted algae: acclimation by changes of PSU number under LT and by PSU size under ST; higher recovery capacity of EQY than the other two species; weak or no correlation of ETR with NPQ. Thus, these characteristics indicate that C. coeruleus cope with high irradiances more efficiently than the Audouinella species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of selective herbicides to control weeds has caused different responses in cultivars of sugar cane, and some products affect physiological characteristics and reduce the photosynthetic activity. This study aimed to evaluate the physiological traits in cultivars of sugar cane under the effect of applying post-emergence herbicides. The test was developed in Jau, SP. The experimental design was randomized blocks in factorial scheme 5 x 4 (cultivar x herbicide) with four replications. SP81-3250, RB855156, RB855453, RB867515, IACSP95-5000 were grown in this studied. Herbicides clomazone (1200 g i.a.ha-1); commercial mixture of clomazone + ametryn (1000 + 1500 g i.a.ha-1) and ametryn (3000 g i.a.ha-1) and a control were applied at 30 days after planting. Cultivars IACSP95-5000 and RB867515 were less affected physiologically and can be considered selective to these herbicides. The application of clomazone and ametryn affected negatively the traits maximum photochemical efficiency of photosystem II (Fv/Fm), SPAD index and photosynthetic pigments, but the mixture of these herbicides caused higher reductions, indicating to be the more aggressive to the cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (F (v)/F (m)), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with F (v)/F (m), SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.