980 resultados para Chemistry synthesis
Resumo:
4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL3) and 4-(p-fluorophenyl) thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I) {Cu(HL1)(PPh3)(2)Br]center dot CH3CN (1) and Cu(HL2)(PPh3)(2)Cl]center dot DMSO (2)} and copper(II) {((Cu2L2Cl)-Cl-3)(2)(mu-Cl)(2)]center dot 2H(2)O (3) and Cu(L-4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and - cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10(4) to 10(5) M-1. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.
Resumo:
Novel imine functionalized monometallic rhenium(I) polypyridine complexes (1-4) comprising two phenol moieties attached to 2,20-bipyridine ligands L1-L4 have been synthesized and characterized. These complexes exhibit selective and sensitive detection towards copper(II) ions and this is observed through changes in UV-visible absorption, luminescence and time-resolved spectroscopic techniques. An enormous enhancement is observed in emission intensity, quantum yield and luminescence lifetime with the addition of copper(II) ions, and this can be attributed to the restriction of C=N isomerization in the Re(I) complexes. The strong binding between copper(II) ions and these complexes reveals that the binding constant values are in the range of 1.1 x 10(3)-6.0 x 103 M-1. The absorption spectral behavior of the complexes is supported by DFT calculations.
Resumo:
In the present study, we have made an effort to develop the novel synthetic antioxidants and antimicrobials with improved potency. The novel benzofuran-gathered C-2,4,6-substituted pyrimidine derivatives 5a, 5b, 5c, 5d, 5e, 5f, 6a, 6b, 6c, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b, 9c, 9d, 9e, 9f were synthesized by simple and efficient four-step reaction pathway. Initially, o-alkyl derivative of salicylaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, upon the treatment with potassium tertiary butoxide in the presence of molecular sieves. Further, Claisen-Schmidt condensation with aromatic aldehydes via treatment with thiourea followed by coupling reaction with different sulfonyl chlorides afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, and elemental analysis and further screened for their antioxidant and antimicrobial activities. The results showed that the synthesized compounds 8b, 8e, 9b, and 9e produced significant antioxidant activity with 50% inhibitory concentration higher than that of reference, whereas compounds 7d and 7c produced dominant antimicrobial activity at concentrations 1.0 and 0.5mg/mL compared with standard Gentamicin and Nystatin, respectively.
Resumo:
The reaction of Ru(eta(6)-cymene)Cl-2](2) and PPh2Cl in the ratio 1:2 gives a stable Ru(h(6)-cymene) Cl-2(PPh2Cl)] complex. Attempts to make the cationic Ru(eta(6)-cymene)Cl(PPh2Cl)(2)]Cl with excess PPh2Cl and higher temperatures led to adventitious hydrolysis and formation of Ru(eta(6)-cymene)Cl-2(PPh2OH)]. Attempts to make a phosphinite complex by reacting Ru(eta(6)-cymene)Cl-2](2) with PPh2Cl in the presence of an alcohol results in the reduction of PPh2Cl to give Ru(eta(6)-cymene)Cl-2(PPh2H)] and the expected phosphinite. The yield of the hydride complex is highest when the alcohol is 1-phenyl-ethane-1,2-diol. All three half-sandwich complexes are characterized by X-ray crystallography. Surprisingly, the conversion of chlorodiphenylphosphine to diphenylphosphine is mediated by 1-phenyl-ethane-1,2-diol even in the absence of the ruthenium half-sandwich precursor.
Resumo:
Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.
Resumo:
The terbium complex supported by beta-diketiminate was synthesized and structurally characterized. Due to an efficient energy transfer from the ligand to the central Tb3+, this complex shows a strong emission corresponding to Tb3+5D4-F-7(J) (J = 6,5,4,3) transitions, with D-5(4)-F-7(5) (550 nm) green emission as the most prominent group. The decay behavior of Tb3+ luminescence depends strongly on the excitation wavelengths.
Resumo:
Reaction of anhydrous ytterbium trichlorides with 2 equiv. of cyclopentylindenyl lithium in THF solution, followed by removal of the solvent MO. crystallization of the product from diethyl ether, affords a crystal complex of the composition (C5H9C9H6)(2)Yb(mu-Cl)(2)Li(Et2O)(2). Crystallographic analysis shows that the ytterbium coordinated by two cyclopentylindenyl rings and lithium surrounded by two ether molecules are bridged by the two chlorine atoms and Yb, U and two chlorine atoms form a plane.
Resumo:
[NH4](4)H[(PMo8V4V2O42)-V-IV-O-V] . 24H(2)O has been hydrothermally synthesized from ammonium vanadate and sodium molybdate in aqueous solution by adding phosphorous acid, and its structure determined by single crystal X-ray analysis. The heteropoly molybdovanadophosphate anion is a bicapped 'pseudo-Keggin' polyanion, two vanadium atoms are distributed at two 'capping' metal atom positions and other four vanadium atoms randomly distributed at eight metal atom positions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Three new lanthanide (Ln)-alkylaluminium (Al) bimetallic complexes with the formula [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AIR(2) . 2THF](2) (Ln = Nd, Y, R=i-C4H9 (i-Bu); Ln=Eu, R=C2H5(Et); THF=tetrahydrofuran) were synthesized by the reaction of Ln(CF,CO,), (Ln=Nd, Y) with HAI (i-Bu)(2) and of Eu(CF3CO2)(3) with AlEt(3), respectively. Their crystal structures were determined by X-ray diffraction at 233 K. [(mu-CF3CO2)(2)Nd (mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Nd-Al) and [(mu-CF3CO2)(2)Y(mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Y-Al) are isomorphous and crystallize in space group
with a=12.441(3) Angstrom [12.347(5) Angstrom for Y-Al], b=12.832(3) Angstrom [12.832(4) Angstrom], c=11.334(3) Angstrom [11.292(8) Angstrom], alpha=104.93 (2)degrees [104.45(4)degrees], beta=98.47(2)degrees [98.81(4)degrees], gamma=64.60(2)degrees [64.30(3)degrees], R=0.519 [0.113], R(w)=0.0532 [0.110], Z=1 and [(mu-CF3CO2)(2)Eu(CF3CHO2)AlEt(2) . 2THF](2)(Eu-Al) in space group P2(1)/n with a=11.913(6) Angstrom, b=14.051(9) Angstrom, c=17.920(9) Angstrom, alpha=101.88(11)degrees, beta=gamma=90 degrees, R=0.0509, R(w)=0.0471 and Z=2. The six CF3CO2- (including CF3CHO2-) of each complex, among which pairs are equivalent, coordinated to Ln and Al in three patterns: (A) the two oxygen atoms in one of the three CF3CO2- type coordinated to two different Ln; (B) the two oxygen atoms in the second of CF3CO2- type coordinated to Ln and Al, respectively; (C) one of the two oxygen atoms in the third CF3CO2- type bidentately coordinated to two Ln and another oxygen coordinated to Al and one of the two Ln, respectively. Unlike types A and B, in type C the carboxyl carbon with a hydrogen atom bonded to it was found to appear as an sp(3)-hybridized configuration rather than an sp(2)-one. 1D and 2D NMR results further confirmed the existence of such a disproportionated CF3CHO2- ligand. Methyl methacrylate (MMA) and epichlorohydrin (ECH) could be polymerized by Y-Al or Eu-Al as a single-component catalyst and highly syndiotactic poly(MMA) was obtained. THF could also be polymerized by Y-Al in the presence of a small amount of ECH.
Resumo:
Acetacetic derivatives of fullerene were obtained by the reaction of C-60 with acetacetic ester, after separation with silica gel column chromatography, in good yields. Fullerenols with 13-15 hydroxyl groups were-isolated as the by-products of this reaction. Detailed experimental conditions and the structural characterizations of these new compounds were discussed.
Resumo:
{(C8H8)Dy[mu-OCH2(CH2)2CH=CH2](THF)}2 was prepared by the reaction of (C8H8)DyCl(THF)n with CH2=CH(CH2)2CH2ONa in THF and characterized by spectroscopic, analytical and crystallographic methods. Its crystal structure shows that the complex is a dimer with
Resumo:
The interaction of (C5H5)2SmCl.LiCl with one equivalent of Li[(CH2)(CH2) PPh2] in refluxing tetrahydrofuran gives the yellow complex [(C5H5)3SmCH2P (Me)Ph2] in 30% yield. The compound has been fully characterized by analytical, spectroscopic and X-ray diffraction methods.
Resumo:
By the reaction of Cp3Ln (Cp = C5H5; Ln = Dy, Ho, Yb) with equimolar n-propyl alcohol in THF (tetrahydrofuran) at room temperature three new binuclear organolanthanide complexes, [CP2Ln(mu-OCH2CH2CH3)]2 (Ln = Dy, Ho, Yb), have been synthesized, as shown by X-ray single-crystal structure analysis for the complex [Cp2Yb(mu-OCH2CH2CH3)]2. All the complexes were characterized by elemental analysis, IR and MS spectra. The Yb2O2 unit is planar, and the ytterbium atom is coordinated by two Cp ring centroids and two oxygen atoms of two n-propyloxide ligands to form a distorted tetrahedral geometry. The average Yb-C (Cp) bond distance is 2.589(17) angstrom. The average Yb-O distance is 2.199(5) angstrom. The Yb-Yb separation [3.521(1) angstrom] indicates that no metal-metal interaction is present.
Resumo:
(Li.3DME)[eta(5)-C5H5)3NdC6H5], 1 was synthesized by the reaction of NdCl3.2LiCl, 2 equivalents of cyclopentadienylsodium and one equivalent of phenyllithium in THF at -78-degrees-C, and crystallized from THF and DME. The crystal structure of 1 was determined by X-ray diffraction method at -80-degrees-C. The crystal of 1 is triclinic, space group P1BAR with a = 15.752(6), b = 16.232(3), c = 23.038(7) angstrom, alpha = 108.81(2), beta = 93.31(3), gamma = 108.38(2)-degrees, Z = 6 and D = 1.33 g/cm3. Least-squares refinement (5732 observed reflections) led to a final R of 0.053. The complex consists of disconnected ion pairs of (Li.3DME)+ and [(eta(5)-C5H5)3NdC6H5]-. The neodymium atom was connected to three eta(5)-bonded cyclopentadienyls and one sigma-bonded phenyl in a distorted tetrahedral arrangement with Nd-C(sigma-) 2.593(17), 2.613(13) and 2.601(13) angstrom.
Resumo:
SmCl3 reacts with K2C8H8 to yield the complex Sm(C8H8)Cl.2thf, which reacts with K(2,4-C7H11) (2,4-C7H11 = 2,4-dimethylcyclopentadienyl) to form Sm(C8H8)(2,4-C7H11).thf; the X-ray crystal structure of Sm(C8H8)(2,4-C7H11).thf shows that the 2,4-dimethylcyclopentadienyl has a 'U' conformation.