995 resultados para Chemical apparatus.
Resumo:
An analysis of gas absorption accompanied by chemical reaction in the presence of interfacial resistance is presented. The analysis indicates that the effect of interfacial resistance on interphase mass transfer is significantly higher in presence of a reaction compared to the pure absorption case. For fixed values of surface resistance and contact time, the difference between the amount of gas transferred across the interface with and without surface resistance increases as the value of reaction velocity increases. For ranges of contact time and surface resistance of practical relevance, the influence of surface resistance is too high to be neglected while designing gas-liquid contactors.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.
Resumo:
It has been known for decades that particles can cause adverse health effects as they are deposited within the respiratory system. Atmospheric aerosol particles influence climate by scattering solar radiation but aerosol particles act also as the nuclei around which cloud droplets form. The principal objectives of this thesis were to investigate the chemical composition and the sources of fine particles in different environments (traffic, urban background, remote) as well as during some specific air pollution situations. Quantifying the climate and health effects of atmospheric aerosols is not possible without detailed information of the aerosol chemical composition. Aerosol measurements were carried out at nine sites in six countries (Finland, Germany, Czech, Netherlands, Greece and Italy). Several different instruments were used in order to measure both the particulate matter (PM) mass and its chemical composition. In the off-line measurements the samples were collected first on a substrate or filter and gravimetric and chemical analysis were conducted in the laboratory. In the on-line measurements the sampling and analysis were either a combined procedure or performed successively within the same instrument. Results from the impactor samples were analyzed by the statistical methods. This thesis comprises also a work where a method for the determination carbonaceous matter size distribution by using a multistage impactor was developed. It was found that the chemistry of PM has usually strong spatial, temporal and size-dependent variability. In the Finnish sites most of the fine PM consisted of organic matter. However, in Greece sulfate dominated the fine PM and in Italy nitrate made the largest contribution to the fine PM. Regarding the size-dependent chemical composition, organic components were likely to be enriched in smaller particles than inorganic ions. Data analysis showed that organic carbon (OC) had four major sources in Helsinki. Secondary production was the major source in Helsinki during spring, summer and fall, whereas in winter biomass combustion dominated OC. The significant impact of biomass combustion on OC concentrations was also observed in the measurements performed in Central Europe. In this thesis aerosol samples were collected mainly by the conventional filter and impactor methods which suffered from the long integration time. However, by filter and impactor measurements chemical mass closure was achieved accurately, and a simple filter sampling was found to be useful in order to explain the sources of PM on the seasonal basis. The online instruments gave additional information related to the temporal variations of the sources and the atmospheric mixing conditions.
Resumo:
This thesis studies the intermolecular interactions in (i) boron-nitrogen based systems for hydrogen splitting and storage, (ii) endohedral complexes, A@C60, and (iii) aurophilic dimers. We first present an introduction of intermolecular interactions. The theoretical background is then described. The research results are summarized in the following sections. In the boron-nitrogen systems, the electrostatic interaction is found to be the leading contribution, as 'Coulomb Pays for Heitler and London' (CHL). For the endohedral complex, the intermolecular interaction is formulated by a one-center expansion of the Coulomb operator 1/rab. For the aurophilic attraction between two C2v monomers, a London-type formula was derived by fully accounting for the anisotropy and point-group symmetry of the monomers.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
Quantum effects are often of key importance for the function of biological systems at molecular level. Cellular respiration, where energy is extracted from the reduction of molecular oxygen to water, is no exception. In this work, the end station of the electron transport chain in mitochondria, cytochrome c oxidase, is investigated using quantum chemical methodology. Cytochrome c oxidase contains two haems, haem a and haem a3. Haem a3, with its copper companion, CuB, is involved in the final reduction of oxygen into water. This binuclear centre receives the necessary electrons from haem a. Haem a, in turn, receives its electrons from a copper ion pair in the vicinity, called CuA. Density functional theory (DFT) has been used to clarify the charge and spin distributions of haem a, as well as changes in these during redox activity. Upon reduction, the added electron is shown to be evenly distributed over the entire haem structure, important for the accommodation of the prosthetic group within the protein. At the same time, the spin distribution of the open-shell oxidised state is more localised to the central iron. The exact spin density distribution has been disputed in the literature, however, different experiments indicating different distributions of the unpaired electron. The apparent contradiction is shown to be due to the false assumption of a unit amount of unpaired electron density; in fact, the oxidised state has about 1.3 unpaired electrons. The validity of the DFT results have been corroborated by wave function based coupled cluster calculations. Point charges, for use in classical force field based simulations, have been parameterised for the four metal centres, using a newly developed methodology. In the procedure, the subsystem for which point charges are to be obtained, is surrounded by an outer region, with the purpose of stabilising the inner region, both electronically and structurally. Finally, the possibility of vibrational promotion of the electron transfer step between haem a and a3 has been investigated. Calculating the full vibrational spectra, at DFT level, of a combined model of the two haems, revealed several normal modes that do shift electron density between the haems. The magnitude of the shift was found to be moderate, at most. The proposed mechanism could have an assisting role in the electron transfer, which still seems to be dominated by electron tunnelling.
Resumo:
A simple yet fairly accurate method of calculating the ideal detonation velocity of an organic explosive from a knowledge of the chemical composition alone is proposed. The method is based on the concept that the energetics of a stoichiometrically balanced fuel-oxidizer system is a function of the total oxidizing or reducing valences of the composition. A combination of the valences in the form of Image , where R and P are, respectively, the reducing and oxidizing valences and MW is the molecular weight, has been found to be linearly related to the detonation velocity of the expolosive. The predicting capacity of the method has been found to be superior to other methods in the literature.
Resumo:
Assessing storage impacts on manure properties is relevant to research associated with nutrient-use efficiency and greenhouse gas (GHG) emissions. We examined the impact of cold storage on physicochemical properties, biochemical methane-emitting potential (BMP) and the composition of microbial communities of beef feedlot manure and poultry broiler litter. Manures were analysed within 2 days of collection and after 2 and 8 weeks in refrigerated (4 °C) or frozen (–20 °C) storage. Compared with fresh manure, stored manures had statistically significant (p < 0.05) but comparatively minor (<10%) changes in electrical conductivity, chloride and ammonium concentrations. Refrigeration and freezing did not significantly affect (p > 0.05) BMP in both manure types. We did not detect ammonium- or nitrite-oxidising bacterial taxa (AOB, NOB) using fluorescence in situ hybridisation (FISH). Importantly, the viability of microbes was unchanged by storage. We conclude that storage at –20 °C or 4 °C adequately preserves the investigated traits of the studied manures for research aimed at improving nutrient cycling and reducing GHG emissions.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
X-ray absorption edge and X-ray photoelectron spectroscopic studies of As-Se glasses seem to support a chemical ordering model.