969 resultados para Central nervous system - Abnormalities
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B56 D64 2007
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neospora caninum is an apicomplexan parasite which has emerged as an important cause of bovine abortion worldwide. Abortion is usually triggered by reactivation of dormant bradyzoites during pregnancy and subsequent congenital infection of the foetus, where the central nervous system appears to be most frequently affected. We here report on an organotypic tissue culture model for Neospora infection which can be used to study certain aspects of the cerebral phase of neosporosis within the context of a three-dimensionally organised neuronal network. Organotypic slice cultures of rat cortical tissue were infected with N. caninum tachyzoites, and the kinetics of parasite proliferation, as well as the proliferation-inhibitory effect of interferon-gamma (IFN-gamma), were monitored by either immunofluorescence, transmission electron microscopy, and a quantitative PCR-assay using the LightCycler instrument, respectively. In addition, the neuronal cytoskeletal elements, namely glial acidic protein filaments as well as actin microfilament bundles were shown to be largely colocalising with the pseudocyst periphery. This organotypic culture model for cerebral neosporosis provides a system, which is useful to study the proliferation, ultrastructural characteristics, development, and the interactions of N. caninum within the context of neuronal tissue, which at the same time can be modulated and influenced under controlled conditions, and will be useful in the future to gain more information on the cerebral phase of neosporosis.
Resumo:
To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain.
Resumo:
Several human neurological disorders are associated with proteins containing abnormally long runs of glutamine residues. Strikingly, most of these proteins contain two or more additional long runs of amino acids other than glutamine. We screened the current human, mouse, Drosophila, yeast, and Escherichia coli protein sequence data bases and identified all proteins containing multiple long homopeptides. This search found multiple long homopeptides in about 12% of Drosophila proteins but in only about 1.7% of human, mouse, and yeast proteins and none among E. coli proteins. Most of these sequences show other unusual sequence features, including multiple charge clusters and excessive counts of homopeptides of length > or = two amino acid residues. Intriguingly, a large majority of the identified Drosophila proteins are essential developmental proteins and, in particular, most play a role in central nervous system development. Almost half of the human and mouse proteins identified are homeotic homologs. The role of long homopeptides in fine-tuning protein conformation for multiple functional activities is discussed. The relative contributions of strand slippage and of dynamic mutation are also addressed. Several new experiments are proposed.
Resumo:
Il tatto assume un'importanza fondamentale nella vita quotidiana, in quanto ci permette di discriminare le caratteristiche fisiche di un oggetto specifico, di identificarlo e di eventualmente integrare le suddette informazioni tattili con informazioni provenienti da altri canali sensoriali. Questa è la componente sensoriale-discriminativa del tatto. Tuttavia quotidianamente il tatto assume un ruolo fondamentale durante le diverse interazioni sociali, positive, come quando abbracciamo o accarezziamo una persona con cui abbiamo un rapporto affettivo e negative, per esempio quando allontaniamo una persona estranea dal nostro spazio peri-personale. Questa componente è la cosiddetta dimensione affettiva-motivazionale, la quale determina la codifica della valenza emotiva che l'interazione assume. Questa componente ci permette di creare, mantenere o distruggere i legami sociali in relazione al significato che il tocco assume durante l'interazione. Se per esempio riceviamo una carezza da un familiare, questa verrà percepita come piacevole e assumerà un significato affiliativo. Questo tipo di tocco è comunente definito come Tocco Sociale (Social Touch). Gli aspetti discriminativi del tatto sono stati ben caratterizzati, in quanto storicamente, il ruolo del tatto è stato considerato quello di discriminare le caratteristiche di ciò che viene toccato, mentre gli aspetti affettivi sono stati solo recentemente indagati considerando la loro importanza nelle interazioni sociali. Il tocco statico responsabile dell'aspetto discriminante attiva a livello della pelle le grandi fibre mieliniche (Aβ), modulando a livello del sistema nervoso centrale le cortecce sensoriali, sia primarie che secondarie. Questo permette la codifica a livello del sistema nervoso centrale delle caratteristiche fisiche oggettive degli oggetti toccati. Studi riguardanti le caratteristiche del tocco affiliativo sociale hanno messo in evidenza che suddetta stimolazione tattile 1) è un particolare tocco dinamico che avviene sul lato peloso delle pelle con una velocità di 1-10 cm/sec; 2) attiva le fibre amieliniche (fibre CT o C-LTMRs); 3) induce positivi effetti autonomici, ad esempio la diminuzione della frequenza cardiaca e l'aumento della variabilità della frequenza cardiaca; e 4) determina la modulazione di regioni cerebrali coinvolte nella codifica del significato affiliativo dello stimolo sensoriale periferico, in particolare la corteccia insulare. Il senso del tatto, con le sue due dimensioni discriminativa e affiliativa, è quotidianamente usato non solo negli esseri umani, ma anche tra i primati non umani. Infatti, tutti i primati non umani utilizzano la componente discriminativa del tatto per identificare gli oggetti e il cibo e l'aspetto emotivo durante le interazioni sociali, sia negative come durante un combattimento, che positive, come durante i comportamenti affiliativi tra cui il grooming. I meccanismi di codifica della componente discriminativa dei primati non umani sono simili a quelli umani. Tuttavia, si conosce ben poco dei meccanismi alla base della codifica del tocco piacevole affiliativo. Pur essendo ben noto che i meccanorecettori amilienici C-LTMRs sono presenti anche sul lato peloso della pelle dei primati non umani, attualmente non ci sono studi riguardanti la correlazione tra il tocco piacevole e la loro modulazione, come invece è stato ampiamente dimostrato nell'uomo. Recentemente è stato ipotizzato (Dunbar, 2010) il ruolo delle fibre C-LTMRs durante il grooming, in particolare durante il cosiddetto swepping. Il grooming è costituito da due azioni motorie, lo sweeping e il picking che vengono eseguite in modo ritmico. Durante lo sweeping la scimmia agente muove il pelo della scimmia ricevente con un movimento a mano aperta, per poter vedere il preciso punto della pelle dove eseguire il picking, ovvero dove prendere la pelle a livello della radice del pelo con le unghie dell'indice e del pollice e tirare per rimuovere parassiti o uova di parassiti e ciò che è rimasto incastrato nel pelo. Oltre il noto ruolo igenico, il grooming sembra avere anche una importante funzione sociale affiliativa. Come la carezza nella società umana, cosi il grooming tra i primati non umani è considerato un comportamento. Secondo l'ipotesi di Dunbar l'attivazione delle C-LTMRs avverrebbe durante lo sweeping e questo porta a supporre che lo sweeping, come la carezza umana, costituisca una componente affiliativa del grooming, determinando quindi a contribuire alla sua codifica come comportamento sociale. Fino ad ora non vi è però alcuna prova diretta a sostegno di questa ipotesi. In particolare, 1) la velocità cui viene eseguito lo sweeping è compatibile con la velocità di attivazione delle fibre CT nell'uomo e quindi con la velocità tipica della carezza piacevole di carattere sociale affiliativo (1-10 cm/sec)?; 2) lo sweeping induce la stessa modulazione del sistema nervoso autonomo in direzione della modulazione del sistema vagale, come il tocco piacevole nell'uomo, attraverso l'attivazione delle fibre CT?; 3) lo sweeping modula la corteccia insulare, cosi come il tocco piacevole viene codificato come affiliativo nell'uomo mediante le proiezioni delle fibre CT a livello dell'insula posteriore? Lo scopo del presente lavoro è quella di testare l'ipotesi di Dunbar sopra citata, cercando quindi di rispondere alle suddette domande. Le risposte potrebbero consentire di ipotizzare la somiglianza tra lo sweeping, caratteristico del comportamento affiliativo di grooming tra i primati non umani e la carezza. In particolare, abbiamo eseguito 4 studi pilota. Nello Studio 1 abbiamo valutato la velocità con cui viene eseguito lo sweeping tra scimmie Rhesus, mediante una analisi cinematica di video registrati tra un gruppo di scimmie Rhesus. Negli Studi 2 e 3 abbiamo valutato gli effetti sul sistema nervoso autonomo dello sweeping eseguito dallo sperimentatore su una scimmia Rhesus di sesso maschile in una tipica situazione sperimentale. La stimolazione tattile è stata eseguita a diverse velocità, in accordo con i risultati dello Studio 1 e degli studi umani che hanno dimostrato la velocità ottimale e non ottimale per l'attivazione delle C-LTMRs. In particolare, nello Studio 2 abbiamo misurato la frequenza cardiaca e la variabilità di questa, come indice della modulatione vagale, mentre nello Studio 3 abbiamo valutato gli effetti dello sweeping sul sistema nervoso autonomo in termini di variazioni di temperatura del corpo, nello specifico a livello del muso della scimmia. Infine, nello Studio 4 abbiamo studiato il ruolo della corteccia somatosensoriale secondaria e insulare nella codifica dello sweeping. A questo scopo abbiamo eseguito registrazioni di singoli neuroni mentre la medesima scimmia soggetto sperimentale dello Studio 2 e 3, riceveva lo sweeping a due velocità, una ottimale per l'attivazione delle C-LTMRs secondo gli studi umani e i risultati dei tre studi sopra citati, ed una non ottimale. I dati preliminari ottenuti, dimostrano che 1) (Studio 1) lo sweeping tra scimmie Rhesus viene eseguito con una velocità media di 9.31 cm/sec, all'interno dell'intervallo di attivazione delle fibre CT nell'uomo; 2) (Studio 2) lo sweeping eseguito dallo sperimentatore sulla schiena di una scimmia Rhesus di sesso maschile in una situazione sperimentale determina una diminuzione della frequenza cardiaca e l'aumento della variabilità della frequenza cardiaca se eseguito alla velocità di 5 e 10 cm/sec. Al contrario, lo sweeping eseguito ad una velocità minore di 1 cm/sec o maggiore di 10 cm/sec, determina l'aumento della frequenza cardiaca e la diminuzione della variabilità di questa, quindi il decremento dell'attivazione del sistema nervoso parasimpatico; 3) (Studio 3) lo sweeping eseguito dallo sperimentatore sulla schiena di una scimmia Rhesus di sesso maschile in una situazione sperimentale determina l'aumento della temperatura corporea a livello del muso della scimmia se eseguito alla velocità di 5-10 cm/sec. Al contrario, lo sweeping eseguito ad una velocità minore di 5 cm/sec o maggiore di 10 cm/sec, determina la diminuzione della temperatura del muso; 4) (Studio 4) la corteccia somatosensoriale secondaria e la corteccia insulare posteriore presentano neuroni selettivamente modulati durante lo sweeping eseguito ad una velocità di 5-13 cm/sec ma non neuroni selettivi per la codifica della velocità dello sweeping minore di 5 cm/sec. Questi risultati supportano l'ipotesi di Dunbar relativa al coinvolgimento delle fibre CT durante lo sweeping. Infatti i dati mettono in luce che lo sweeping viene eseguito con una velocità (9.31 cm/sec), simile a quella di attivazione delle fibre CT nell'uomo (1-10 cm/sec), determina gli stessi effetti fisiologici positivi in termini di frequenza cardiaca (diminuzione) e variabilità della frequenza cardiaca (incremento) e la modulazione delle medesime aree a livello del sistema nervoso centrale (in particolare la corteccia insulare). Inoltre, abbiamo dimostrato per la prima volta che suddetta stimolazione tattile determina l'aumento della temperatura del muso della scimmia. Il presente studio rappresenta la prima prova indiretta dell'ipotesi relativa alla modulazione del sistema delle fibre C-LTMRs durante lo sweeping e quindi della codifica della stimolazione tattile piacevole affiliativa a livello del sistema nervoso centrale ed autonomo, nei primati non umani. I dati preliminari qui presentati evidenziano la somiglianza tra il sistema delle fibre CT dell'uomo e del sistema C-LTMRs nei primati non umano, riguardanti il Social Touch. Nonostante ciò abbiamo riscontrato alcune discrepanze tra i risultati da noi ottenuti e quelli invece ottenuti dagli studi umani. La velocità media dello sweeping è di 9.31 cm / sec, rasente il limite superiore dell’intervallo di velocità che attiva le fibre CT nell'uomo. Inoltre, gli effetti autonomici positivi, in termini di battito cardiaco, variabilità della frequenza cardiaca e temperatura a livello del muso, sono stati evidenziati durante lo sweeping eseguito con una velocità di 5 e 10 cm/sec, quindi al limite superiore dell’intervallo ottimale che attiva le fibre CT nell’uomo. Al contrario, lo sweeping eseguito con una velocità inferiore a 5 cm/sec e superiore a 10 cm/sec determina effetti fisiologici negativo. Infine, la corteccia insula sembra essere selettivamente modulata dallo stimolazione eseguita alla velocità di 5-13 cm/sec, ma non 1-5 cm/sec. Quindi, gli studi sul sistema delle fibre CT nell’uomo hanno dimostrato che la velocità ottimale è 1-10 cm/sec, mentre dai nostri risultati la velocità ottimale sembra essere 5-13 cm / sec. Quindi, nonostante l'omologia tra il sistema delle fibre CT nell'umano deputato alla codifica del tocco piacevole affiliativo ed il sistema delle fibre C-LTMRs nei primati non umani, ulteriori studi saranno necessari per definire con maggiore precisione la velocità ottimale di attivazione delle fibre C-LTMR e per dimostrare direttamente la loro attivazione durante lo sweeping, mediante la misurazione diretta della loro modulazione. Studi in questa direzione potranno confermare l'omologia tra lo sweeping in qualità di tocco affiliativo piacevole tra i primati non umani e la carezza tra gli uomini. Infine, il presente studio potrebbe essere un importante punto di partenza per esplorare il meccanismo evolutivo dietro la trasformazione dello sweeping tra primati non umani, azione utilitaria eseguita durante il grooming, a carezza, gesto puramente affiliativo tra gli uomini.
Resumo:
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems. (c) 2005, Elsevier Inc.
Resumo:
International audience
Resumo:
Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required and, appropriate consideration should be given to genetic defects causing GH deficiency (GHD). Because Insulin-like-Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GHRH-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH-gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency they may present initially as GHD. These defects are discussed in various different chapters within this book, whereas, the impact of alterations of the GHRH-, GHRH-receptor- --as well as the GH-receptor (GHR) gene--will be discussed here.
Resumo:
When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.
Resumo:
The effects of indomethacin on central nervous system abnormalities in rabbits with experimental pneumococcal meningitis were studied. As expected, prostaglandin E2 levels in cerebrospinal fluid were significantly lower in the indomethacin-treated group, indicating that the drug effectively reduced prostaglandin synthesis. Brain edema was markedly attenuated in the indomethacin-treated group; however, cerebrospinal fluid white blood cell counts, lactate and protein concentrations, and intracisternal pressure were not significantly different between groups. It seems that indomethacin, while effective in reducing brain edema, does not significantly affect other important pathophysiologic alterations in experimental pneumococcal meningitis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)