961 resultados para Cardiac output


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract BACKGROUND: Pulse pressure variations (PPVs) and stroke volume variations (SVVs) are dynamic indices for predicting fluid responsiveness in intensive care unit patients. These hemodynamic markers underscore Frank-Starling law by which volume expansion increases cardiac output (CO). The aim of the present study was to evaluate the impact of the administration of catecholamines on PPV, SVV, and inferior vena cava flow (IVCF). METHODS: In this prospective, physiologic, animal study, hemodynamic parameters were measured in deeply sedated and mechanically ventilated pigs. Systemic hemodynamic and pressure-volume loops obtained by inferior vena cava occlusion were recorded. Measurements were collected during two conditions, that is, normovolemia and hypovolemia, generated by blood removal to obtain a mean arterial pressure value lower than 60 mm Hg. At each condition, CO, IVCF, SVV, and PPV were assessed by catheters and flow meters. Data were compared between the conditions normovolemia and hypovolemia before and after intravenous administrations of norepinephrine and epinephrine using a nonparametric Wilcoxon test. RESULTS: Eight pigs were anesthetized, mechanically ventilated, and equipped. Both norepinephrine and epinephrine significantly increased IVCF and decreased PPV and SVV, regardless of volemic conditions (p < 0.05). However, epinephrine was also able to significantly increase CO regardless of volemic conditions. CONCLUSION: The present study demonstrates that intravenous administrations of norepinephrine and epinephrine increase IVCF, whatever the volemic conditions are. The concomitant decreases in PPV and SVV corroborate the fact that catecholamine administration recruits unstressed blood volume. In this regard, understanding a decrease in PPV and SVV values, after catecholamine administration, as an obvious indication of a restored volemia could be an outright misinterpretation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-flow, low-gradient severe aortic stenosis (AS) is characterised by a small aortic valve area (AVA) and low mean gradient (MG) secondary to a low cardiac output and may occur in patients with either a preserved or reduced left ventricular ejection fraction (LVEF). Symptomatic patients presenting with low-flow, low-gradient severe AS have a dismal prognosis independent of baseline LVEF if managed conservatively and should therefore undergo aortic valve replacement if feasible. Transthoracic echocardiography (TTE) is the first-line investigation for the assessment of AS haemodynamic severity. However, when confronted with guideline-discordant AVA (small) and MG (low) values, there are several reasons other than severe AS combined with a low cardiac output which may lead to such a situation, including erroneous measurements, small body size, inherent inconsistencies in the guidelines' criteria, prolonged ejection time and aortic pseudostenosis. The distinction between these various entities poses a diagnostic challenge. However, it is important to make a distinction because each has very different implications in terms of risk stratification and therapeutic management. In such instances, cardiac catheterisation forms an integral part of the work-up of these patients in order to confirm or refute the echocardiographic findings to guide management decisions appropriately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac dysfunction is frequently observed in patients with cirrhosis, and has long been linked to the direct toxic effect of alcohol. Cirrhotic cardiomyopathy (CCM) has recently been identified as an entity regardless of the cirrhosis etiology. Increased cardiac output due to hyperdynamic circulation is a pathophysiological hallmark of the disease. The underlying mechanisms involved in pathogenesis of CCM are complex and involve various neurohumoral and cellular pathways, including the impaired β-receptor and calcium signaling, altered cardiomyocyte membrane physiology, elevated sympathetic nervous tone and increased activity of vasodilatory pathways predominantly through the actions of nitric oxide, carbon monoxide and endocannabinoids. The main clinical features of CCM include attenuated systolic contractility in response to physiologic or pharmacologic strain, diastolic dysfunction, electrical conductance abnormalities and chronotropic incompetence. Particularly the diastolic dysfunction with impaired ventricular relaxation and ventricular filling is a prominent feature of CCM. The underlying mechanism of diastolic dysfunction in cirrhosis is likely due to the increased myocardial wall stiffness caused by myocardial hypertrophy, fibrosis and subendothelial edema, subsequently resulting in high filling pressures of the left ventricle and atrium. Currently, no specific treatment exists for CCM. The liver transplantation is the only established effective therapy for patients with end-stage liver disease and associated cardiac failure. Liver transplantation has been shown to reverse systolic and diastolic dysfunction and the prolonged QT interval after transplantation. Here, we review the pathophysiological basis and clinical features of cirrhotic cardiomyopathy, and discuss currently available limited therapeutic options.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND The assessment of hemodynamic status is a crucial task in the initial evaluation of trauma patients. However, blood pressure and heart rate are often misleading, as multiple variables may impact these conventional parameters. More reliable methods such as pulmonary artery thermodilution for cardiac output measuring would be necessary, but its applicability in the Emergency Department is questionable due to their invasive nature. Non-invasive cardiac output monitoring devices may be a feasible alternative. METHODS A systematic literature review was conducted. Only studies that explicitly investigated non-invasive hemodynamic monitoring devices in trauma patients were considered. RESULTS A total of 7 studies were identified as suitable and were included into this review. These studies evaluated in a total of 1,197 trauma patients the accuracy of non-invasive hemodynamic monitoring devices by comparing measurements to pulmonary artery thermodilution, which is the gold standard for cardiac output measuring. The correlation coefficients r between the two methods ranged from 0.79 to 0.92. Bias and precision analysis ranged from -0.02 +/- 0.78 l/min/m(2) to -0.14 +/- 0.73 l/min/m(2). Additionally, data on practicality, limitations and clinical impact of the devices were collected. CONCLUSION The accuracy of non-invasive cardiac output monitoring devices in trauma patients is broadly satisfactory. As the devices can be applied very early in the shock room or even preclinically, hemodynamic shock may be recognized much earlier and therapeutic interventions could be applied more rapidly and more adequately. The devices can be used in the daily routine of a busy ED, as they are non-invasive and easy to master.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ATLS program by the American college of surgeons is probably the most important globally active training organization dedicated to improve trauma management. Detection of acute haemorrhagic shock belongs to the key issues in clinical practice and thus also in medical teaching. (In this issue of the journal William Schulz and Ian McConachrie critically review the ATLS shock classification Table 1), which has been criticized after several attempts of validation have failed [1]. The main problem is that distinct ranges of heart rate are related to ranges of uncompensated blood loss and that the heart rate decrease observed in severe haemorrhagic shock is ignored [2]. Table 1. Estimated blood loos based on patient's initial presentation (ATLS Students Course Manual, 9th Edition, American College of Surgeons 2012). Class I Class II Class III Class IV Blood loss ml Up to 750 750–1500 1500–2000 >2000 Blood loss (% blood volume) Up to 15% 15–30% 30–40% >40% Pulse rate (BPM) <100 100–120 120–140 >140 Systolic blood pressure Normal Normal Decreased Decreased Pulse pressure Normal or ↑ Decreased Decreased Decreased Respiratory rate 14–20 20–30 30–40 >35 Urine output (ml/h) >30 20–30 5–15 negligible CNS/mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic Initial fluid replacement Crystalloid Crystalloid Crystalloid and blood Crystalloid and blood Table options In a retrospective evaluation of the Trauma Audit and Research Network (TARN) database blood loss was estimated according to the injuries in nearly 165,000 adult trauma patients and each patient was allocated to one of the four ATLS shock classes [3]. Although heart rate increased and systolic blood pressure decreased from class I to class IV, respiratory rate and GCS were similar. The median heart rate in class IV patients was substantially lower than the value of 140 min−1 postulated by ATLS. Moreover deterioration of the different parameters does not necessarily go parallel as suggested in the ATLS shock classification [4] and [5]. In all these studies injury severity score (ISS) and mortality increased with in increasing shock class [3] and with increasing heart rate and decreasing blood pressure [4] and [5]. This supports the general concept that the higher heart rate and the lower blood pressure, the sicker is the patient. A prospective study attempted to validate a shock classification derived from the ATLS shock classes [6]. The authors used a combination of heart rate, blood pressure, clinically estimated blood loss and response to fluid resuscitation to classify trauma patients (Table 2) [6]. In their initial assessment of 715 predominantly blunt trauma patients 78% were classified as normal (Class 0), 14% as Class I, 6% as Class II and only 1% as Class III and Class IV respectively. This corresponds to the results from the previous retrospective studies [4] and [5]. The main endpoint used in the prospective study was therefore presence or absence of significant haemorrhage, defined as chest tube drainage >500 ml, evidence of >500 ml of blood loss in peritoneum, retroperitoneum or pelvic cavity on CT scan or requirement of any blood transfusion >2000 ml of crystalloid. Because of the low prevalence of class II or higher grades statistical evaluation was limited to a comparison between Class 0 and Class I–IV combined. As in the retrospective studies, Lawton did not find a statistical difference of heart rate and blood pressure among the five groups either, although there was a tendency to a higher heart rate in Class II patients. Apparently classification during primary survey did not rely on vital signs but considered the rather soft criterion of “clinical estimation of blood loss” and requirement of fluid substitution. This suggests that allocation of an individual patient to a shock classification was probably more an intuitive decision than an objective calculation the shock classification. Nevertheless it was a significant predictor of ISS [6]. Table 2. Shock grade categories in prospective validation study (Lawton, 2014) [6]. Normal No haemorrhage Class I Mild Class II Moderate Class III Severe Class IV Moribund Vitals Normal Normal HR > 100 with SBP >90 mmHg SBP < 90 mmHg SBP < 90 mmHg or imminent arrest Response to fluid bolus (1000 ml) NA Yes, no further fluid required Yes, no further fluid required Requires repeated fluid boluses Declining SBP despite fluid boluses Estimated blood loss (ml) None Up to 750 750–1500 1500–2000 >2000 Table options What does this mean for clinical practice and medical teaching? All these studies illustrate the difficulty to validate a useful and accepted physiologic general concept of the response of the organism to fluid loss: Decrease of cardiac output, increase of heart rate, decrease of pulse pressure occurring first and hypotension and bradycardia occurring only later. Increasing heart rate, increasing diastolic blood pressure or decreasing systolic blood pressure should make any clinician consider hypovolaemia first, because it is treatable and deterioration of the patient is preventable. This is true for the patient on the ward, the sedated patient in the intensive care unit or the anesthetized patients in the OR. We will therefore continue to teach this typical pattern but will continue to mention the exceptions and pitfalls on a second stage. The shock classification of ATLS is primarily used to illustrate the typical pattern of acute haemorrhagic shock (tachycardia and hypotension) as opposed to the Cushing reflex (bradycardia and hypertension) in severe head injury and intracranial hypertension or to the neurogenic shock in acute tetraplegia or high paraplegia (relative bradycardia and hypotension). Schulz and McConachrie nicely summarize the various confounders and exceptions from the general pattern and explain why in clinical reality patients often do not present with the “typical” pictures of our textbooks [1]. ATLS refers to the pitfalls in the signs of acute haemorrhage as well: Advanced age, athletes, pregnancy, medications and pace makers and explicitly state that individual subjects may not follow the general pattern. Obviously the ATLS shock classification which is the basis for a number of questions in the written test of the ATLS students course and which has been used for decades probably needs modification and cannot be literally applied in clinical practice. The European Trauma Course, another important Trauma training program uses the same parameters to estimate blood loss together with clinical exam and laboratory findings (e.g. base deficit and lactate) but does not use a shock classification related to absolute values. In conclusion the typical physiologic response to haemorrhage as illustrated by the ATLS shock classes remains an important issue in clinical practice and in teaching. The estimation of the severity haemorrhage in the initial assessment trauma patients is (and was never) solely based on vital signs only but includes the pattern of injuries, the requirement of fluid substitution and potential confounders. Vital signs are not obsolete especially in the course of treatment but must be interpreted in view of the clinical context. Conflict of interest None declared. Member of Swiss national ATLS core faculty.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. METHODS AND RESULTS In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. CONCLUSIONS Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preeclampsia is a disease that affects 3–5% of all pregnancies. The cause is unknown and there is currently no treatment. The disease poses significant health risks to both the mother and the fetus. To date, research on the topic has not produced a convincing cause for the development of the hallmark symptoms of preeclampsia. The hypothesis of an agonistic autoimmune response to the AT1 receptor is presented. Immunoglobulin fractions from normotensive and preeclampsia patients were prepared for experimental tests. Model systems were tested in three categories to determine if AT 1 receptor specific activation and receptor-ligand interaction was caused by a suspected autoantibody. Activation was found in rat neonatal cardiornyocytes that caused an increased contraction rate. This activity was found in preeclampsia patients, absent in normotensive patients. The activation was antagonized by losartan, an AT1 receptor antagonist, and by epitope peptide competition of the receptor-ligand type interaction. This epitope was the 7 amino acid peptide fragment, AFHYESQ, a sequence present in the second extracellular loop of the AT1 receptor. The patterns of AT1 receptor activation were also found in a human trophoblast cell line, HTR8, with an effect on Pai-1 secretion, a factor that plays a role in preventing hypercoagulation. In human mesangial cells, the AT1 receptor autoantibody present in the immunoglobulin fraction from preeclampsia patients was found to stimulate the secretion of Pai-1, and IL-6, a factor that plays a role in the activation of an inflammatory response. This activity was found in samples from preeclampsia patients, but absent in normotensive patients. Tests including losartan, AFHYESQ, and a non-competitive peptide demonstrated that the secretion of Pai-1 and IL-6 met the criteria for AT1 receptor activation by the suspected agonistic autoantibody. These three model systems address relevant pathophysiology for preeclampsia patients, including increased cardiac output, abnormal placentation, and renal damage. The AT1 receptor agonistic autoantibody is potentially a key player in the development of the pathology and symptoms of preeclampsia. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of thermal tolerance in marine ectotherms are key in understanding climate effects on ecosystems; however, tolerance of their larval stages has rarely been analyzed. Larval stages are expected to be particularly sensitive. Thermal stress may affect their potential for dispersal and zoogeographical distribution. A mismatch between oxygen demand and the limited capacity of oxygen supply to tissues has been hypothesized to be the first mechanism restricting survival at thermal extremes. Therefore, thermal tolerance of stage zoea I larvae was examined in two populations of the Chilean kelp crab Taliepus dentatus, which are separated by latitude and the thermal regime. We measured temperature-dependent activity, oxygen consumption, cardiac performance, body mass and the carbon (C) and nitrogen (N) composition in order to: (1) examine thermal effects from organismal to cellular levels, and (2) compare the thermal tolerance of larvae from two environmental temperature regimes. We found that larval performance is affected at thermal extremes indicated by decreases in activity, mainly in maxilliped beat rates, followed by decreases in oxygen consumption rates. Cardiac stroke volume was almost temperature-independent. Through changes in heart rate, cardiac output supported oxygen demand within the thermal window whereas at low and high temperature extremes heart rate declined. The comparison between southern and central populations suggests the adaptation of southern larvae to a colder temperature regime, with higher cardiac outputs due to increased cardiac stroke volumes, larger body sizes but similar body composition as indicated by similar C:N ratios. This limited but clear differentiation of thermal windows between populations allows the species to widen its biogeographical range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O2-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O2/O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O2 or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. © 2016 American Physiological Society. Compr Physiol 6:827-895, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Candesartan in Heart failure: Assessment of Reduction in Mortality and mortality (CHARM) programme has already shown that candesartan is an effective alternative to angiotensin-converting enzyme (ACE) inhibitors (CHARM-Alternative), that additional benefits can be achieved by adding candesartan to ACE inhibitors (CHARM-Added), and that in patients with a preserved cardiac output there are reduced hospital admissions (CHARM-Preserved). Further recent analysis of the CHARM programme has shown that of the cardiovascular deaths, the benefit of candesartan was due to a reduction in sudden death and progressive heart failure, and that these reductions were observed in the -Alternative and -Added but not -Preserved components. Combination of the CHAR M-Alternative and -Added trials confirmed this reduction of cardiovascular deaths, and also demonstrated that candesartan reduced hospital admissions. There were also improvements in the New York Heart Association functional class of heart failure in the -Alternative and -Added, but not -Preserved, components of CHARM. The benefits of candesartan in heart failure are maintained in the presence of an ACE inhibitor and P-blocker. So far, all of the findings with candesartan in the CHARM programme have been favourable/CHARMed, although the beneficial effects in patients with a preserved cardiac output are limited.