974 resultados para Cardiac function
Resumo:
Bacurau AV, Jardim MA, Ferreira JC, Bechara LR, Bueno CR Jr, Alba-Loureiro TC, Negrao CE, Casarini DE, Curi R, Ramires PR, Moriscot AS, Brum PC. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106: 1631-1640, 2009. First published January 29, 2009; doi:10.1152/japplphysiol.91067.2008.-Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA -> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.
Resumo:
Background/Aim. Granulocyte colony-stimulating factor (G-CSF) reduces myocardial injury and improves cardiac function after myocardial infarction (MI). We investigated the early alterations provided by G-CSF and the chronic repercussions in infarcted rats. Methods. Male Wistar rats (200-250g) received vehicle (MI) or G-CSF (MI-GCSF) (50 mu g/kg, sc) at 7, 3 and 1 days before MI surgery. Afterwards MI was produced and infarct size was measured 1 and 15 days after surgery. Expression of anti-and proapoptotic proteins was evaluated immediately before surgery. 24 hours after surgery, apoptotic nuclei were evaluated. Two weeks after MI, left ventricular (LV) function was evaluated, followed by in situ LV diastolic pressure-volume evaluation. Results. Infarct size was decreased by 1 day pretreatment before occlusion (36 +/- 2.8 vs. 44 +/- 2.1% in MI; P<0.05) and remained reduced at 15 days after infarction (28 +/- 2.2 vs. 36 +/- 1.4% in MI; P<0.05). G-CSF pretreatment increased Bcl-2 and Bcl-xL protein expression, but did not alter Bax in LV. Apoptotic nuclei were reduced by treatment (Sham: 0.46 +/- 0.42, MI: 15.5 +/- 2.43, MI-GCSF: 5.34 +/- 3.34%; P<0.05). Fifteen days after MI, cardiac function remained preserved in G-CSF pretreated rats. The LV dilation was reduced in MI-G-CSF group as compared to MI rats, being closely associated with infarct size. Conclusion. The early beneficial effects of G-CSF were essentials to preserve cardiac function at a chronic stage of myocardial infarction. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.
Resumo:
Objetivo: estudar os efeitos hemodinâmicos da solução salina hipertônica/dextran, comparada com solução salina normal, em pacientes com sepse grave. Modelo: ensaio clínico randomizado, prospectivo, duplo-cego, controlado. Local: Unidade de Terapia Intensiva de um hospital universitário. Pacientes: 29 pacientes com sepse grave, admitidos na UTI com pressão de oclusão da artéria pulmonar (POAP) menor que 12 mmHg. Intervenções: os pacientes foram randomizados para receber 250 ml da solução salina normal [NaCl 0,9%] (Grupo SS, n=16) ou solução salina hipertônica [NaCl 7,5%]/dextran 70 8% ( Grupo SSH, n=13). Medidas e resultados: para cada grupo foram coletadas medidas hemodinâmicas, gasometrias (arterial e venosa), lactato e sódio séricos nos tempos 0, 30 minutos, 60 minutos, 120 minutos e 180 minutos. Durante o período do estudo não foi permitida qualquer alteração na infusão tanto de fluidos quanto das drogas vasopressoras. A POAP foi maior no grupo SSH, com a diferença sendo maior em 30 minutos (10,7±3,2 mmHg vs. 6,8±3,2 mmHg) e 60 minutos (10,3±3 mmHg vs. 7,4±2,9 mmHg); p<0,05. O índice cardíaco aumentou apenas no grupo SSH, sendo que as diferenças foram maiores em 30 minutos (6,5±4,7 l min-1 m-2 vs. 3,8±3,4 l min-1 m-2), em 60 minutos (4,9±4,5 l min-1 m-2 vs. 3,7±3,3 l min-1 m-2) e em 120 minutos (5,0±4,3 l min-1 m-2 vs. 4,1±3,4 l min-1 m-2); p<0,05. O índice sistólico seguiu o mesmo padrão e foi maior em 30 minutos (53,6[39,2-62,8] ml m-2 vs. 35,6[31,2-49,2] ml m-2) e em 60 minutos (46,8[39,7-56,6] ml m-2 vs. 33,9[32,2-47,7] ml m-2); p<0,05. A resistência vascular sistêmica diminuiu no grupo SSH e foi menor nos tempos 30 minutos (824±277 dyne s-1 cm-5 m-2 vs. 1139±245 dyne s-1 cm-5 m-2), em 60 minutos (921±256 dyne s-1 cm-5 m-2 vs. 1246±308 dyne s-1 cm-5 m-2) e em 120 minutos (925±226 dyne s-1 cm-5 m-2 vs. 1269±494 dyne s-1 cm-5 m-2); p<0,05. O sódio sérico aumentou no grupo SSH e foi maior do que o grupo SS em 30 minutos (145±3 mEq l-1 vs. 137±7 mEq l-1), em 60 minutos (143±4 mEq l-1 vs. 136±77 mEq l-1), em 120 minutos (142±5 mEq l-1vs. 136±7 mEq l-1) e em 180 minutos (142±5 mEq l-1 vs. 136±87 mEq l-1); p<0,05. Conclusão: Solução salina hipertônica/dextran pode melhorar a performance cardiovascular na ressuscitação de pacientes com sepse grave. Os efeitos hemodinâmicos parecem estar relacionados tanto ao efeito no volume quanto a melhora da função cardíaca. A SSH/dextran podem ajudar a restaurar rapidamente a estabilidade hemodinâmica em pacientes sépticos, hipovolêmicos, sem apresentar efeitos indesejáveis significativos.
Resumo:
There is no data about cardiac measurements em Brazilians obtained by CMR. This a muldisciplinary study with the objective of obtaining measurements of the left ventricle (LV) and right ventricle (RV) diastolic diameter (Dd), systolic diameter (Ds), diastolic volume (Dv), systolic volume (Sv), ejection fraction (EF) and myocardial mass in Brazilians. One hundred and seven (54 men and 53 women, mean age of 43.4 ± 13.1 years) asymptomatic individuals without heart disease were submitted to cardiac magnetic resonance (cMR) studies using steady state free precession technique. The means and standard deviations of the parameters of the LV and RV were respectively: LVDD = 4,8 ± 0,5 cm; LVSD = 3,0±0,6 cm; LVDV = 128,4±29,6 ml; LVSV = 45,2±16,6 ml; LVEF = 65,5±6,3%; LV mass = 95,2±30,8.1 g; RVDD = 3,9±1,3 cm; RVSD = 2,5±0,5 cm; RVDV = 126,5±30,7 ml; RVSV = 53.6±18,4 ml; RVEF = 58.3±8,0.0% and RV mass = 26,1±6,1 g. The masses and volumes were significantly higher in men, except for the LVSV. The RV EF was significantly higher in women. There was inverse correlation between RV systolic volume and with age, being more significant in men. This study describes for the first time benchmarks for cardiac measurements obtained by CMR among asymptomatic Brazilians individuals without heart disease and demonstrated differences according to sex and age
Resumo:
Backgroud: Obesity is a major public health problem and is related to the low physical capacity when obese are compared to no-obese people, however the cause of this limitation is not completely understood. The measurement associated of physiological response to the telemetric 6MWT adds information of metabolic and respiratory system for diagnose of the functional limitation. Objective: Analyze physiological, metabolic and ventilatory responses in women with different body fat during the 6MWT. Methods: 32 women (8 non-obese, 8 Overweight, 8 Obese and 8 morbidly obese) were evaluated for anthropometry, lung function and exercise capacity. Results: Morbidly obese walked the shortest distance (400.2±38.7m), had lower VO2/Kg (12.75±3.20l/Kg/min) and lower R (0.74± 0.11) in the 6MWT compared to other groups. Analyses of metabolic (VO2 and VCO2) and respiratory (VE, VT and BF) during the test did not identify differences between groups. The evaluation of cardiac function (O2 pulse) found higher values in the OM (12.3 ± 4.9ml/bat). Conclusion: The OM had worse performance in the 6MWT compared to other groups. The physical performance may be reduced in this population related to a protocol-dependent response because the speed of 6MWT is self-adjusted allows the individual himself select the intensity of the test, making it set at a speed where there is energy saving
Resumo:
Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ss-adrenergic stimulation with 1.0 mu M isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 +/- 5 vs 158 +/- 5, P < 0.0005) and low catalase (7 +/- 1 vs 9 +/- 1, P < 0.005) and superoxide-dismutase (18 +/- 2 vs 27 +/- 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.
Resumo:
Background: ACE inhibitors have shown beneficial results in several studies after myocardial infarction (MI). However, these studies have shown conflicting results about the ideal starting time of the ACE inhibitors administration after MI and the importance of infarct size.Objectives: This study was designed to assess the long-term effects of lisinopril on mortality, cardiac function, and ventricular fibrosis after MI, in rats.Methods: Lisinopril (20 mg/kg/day) was given on day 1 or 21 days after coronary occlusion in small or large infarctions.Results: the mortality rate was reduced by 39% in early treatment and 30% in delayed treatment in comparison to the untreated rats. Early treatment reduced cardiac dysfunction in small MIs; however, delayed treatment did not. No statistical difference was observed among the groups for large MIs. No statistical difference was observed among the groups with large or small MIs on myocardial hydroxyproline concentration.Conclusions: Both early and delayed treatments with lisinopril increased survival. Treatment exerts no marked effects on fibrosis; early treatment has exerted beneficial influences on cardiac function whereas delayed treatment had no consistent effects. The protective effect of lisinopril is detectable only in small (< 40% of LV) MIs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The objective of this study was to determine the early echocardiographic predictors of elevated left ventricular end-diastolic pressure (LVEDP) after a long follow-up period in the infarcted rat model.Material/Methods: Five days and three months after surgery, sham and infarcted animals were subjected to transthoracic echocardiography. Regression analysis and receiver-operating characteristic (ROC) curve were performed for predicting increased LVEDP 3 months after MI.Results: Among all of the variables, assessed 5 days after myocardial infarction, infarct size (OR: 0.760; CI 95% 0.563-0.900; p=0.005), end-systolic area (ESA) (OR: 0.761; Cl 95% 0.564-0.900; p=0.008), fractional area change (FAC) (OR: 0.771; CI 95% 0.574-0.907; p=0.003), and posterior wall-shortening velocity (PWSV) (OR: 0.703; CI 95% 0.502-0.860; p=0.048) were predictors of increased LVEDP. The LVEDP was 3.6 +/- 1.8 mmHg in the control group and 9.4 +/- 7.8 mmHg among the infarcted animals (p=0.007). Considering the critical value of predictor variables in inducing cardiac dysfunction, the cut-off value was 35% for infarct size, 0.33 cm(2) for ESA, 40% for FAC, and 26 mm/s for PWSV.Conclusions: Infarct size, FAC, ESA, and PWSV, assessed five days after myocardial infarction, can be used to estimate an increased LVEDP three months following the coronary occlusion.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Atualmente, diante das técnicas atuais, a manometria tem sido relegada a plano secundário durante a cateterização cardíaca. No entanto, ainda fornece importantes informações para identificação e avaliação das doenças cardiovasculares. Os dados coletados durante os exames possibilitam a obtenção de variáveis quantitativas e qualitativas, as quais podem ser comparadas aos padrões normais. Os sistemas manométricos são compostos por transdutor, amplificador e registrador, que, em conjunto, devem espelhar com fidelidade a morfologia e os valores das variáveis analisadas. Para atingir esse objetivo, é necessário desempenho adequado de todos os componentes. Se uma determinada informação é de extrema relevância, o operador deve gastar tempo suficiente para obtê-la de maneira inequívoca. Assim, o operador deve estar familiarizado com os sistemas manométricos e com as fontes de erro relacionadas com as técnicas de registro, cateteres, conectores e fluidos. Com os fundamentos analisados neste manuscrito, salientamos que deve ser dispensada atenção às ondas de pressão usadas nas interpretações da fisiopatologia das doenças cardiovasculares.
Resumo:
Previous works from our laboratory have revealed that food restriction (FR) promotes discrete myocardial dysfunction in young rats. We examined the effects of FR on cardiac function, in vivo and in vitro, and ultrastructural changes in the heart of middle-aged rats. Twelve-month-old Wistar- Kyoto rats were fed a control (C) or restricted diet (daily intake reduced to 50% of the control group) for 90 days. Cardiac performance was studied by echocardiogram and in isolated left ventricular (LV) papillary muscle by isometric contraction in basal condition, after calcium chloride (5.2 mM) and beta- adrenergic stimulation with isoproterenol (10(-6) M). FR did not change left ventricular function, but increased time to peak tension, and decreased maximum rate of papillary muscle tension development. Inotropic maneuvers promoted similar effects in both groups. Ultrastructural alterations were seen in most FR rat muscle fibers and included, absence and/or disorganization of myofilaments and Z line, hyper-contracted myofibrils, polymorphic and swollen mitochondria with disorganized cristae, and a great quantity of collagen fibrils. In conclusion, cardiac muscle sensitivity to isoproterenol and elevation of extracellular calcium concentration is preserved in middle-aged FR rats. The intrinsic muscle performance depression might be related to morphological damage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)