930 resultados para Cardboard boxes
Resumo:
The boxicity of a graph G, denoted as boxi(G), is defined as the minimum integer t such that G is an intersection graph of axis-parallel t-dimensional boxes. A graph G is a k-leaf power if there exists a tree T such that the leaves of the tree correspond to the vertices of G and two vertices in G are adjacent if and only if their corresponding leaves in T are at a distance of at most k. Leaf powers are used in the construction of phylogenetic trees in evolutionary biology and have been studied in many recent papers. We show that for a k-leaf power G, boxi(G) a parts per thousand currency sign k-1. We also show the tightness of this bound by constructing a k-leaf power with boxicity equal to k-1. This result implies that there exist strongly chordal graphs with arbitrarily high boxicity which is somewhat counterintuitive.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In ddition, some properties of the FD are discussed.
Resumo:
The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.
Resumo:
The boxicity of a graph H, denoted by View the MathML source, is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in View the MathML source. In this paper we show that for a line graph G of a multigraph, View the MathML source, where Δ(G) denotes the maximum degree of G. Since G is a line graph, Δ(G)≤2(χ(G)−1), where χ(G) denotes the chromatic number of G, and therefore, View the MathML source. For the d-dimensional hypercube Qd, we prove that View the MathML source. The question of finding a nontrivial lower bound for View the MathML source was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795–5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once).
Resumo:
An axis-parallel box in $b$-dimensional space is a Cartesian product $R_1 \times R_2 \times \cdots \times R_b$ where $R_i$ (for $1 \leq i \leq b$) is a closed interval of the form $[a_i, b_i]$ on the real line. For a graph $G$, its boxicity is the minimum dimension $b$, such that $G$ is representable as the intersection graph of (axis-parallel) boxes in $b$-dimensional space. The concept of boxicity finds application in various areas of research like ecology, operation research etc. Chandran, Francis and Sivadasan gave an $O(\Delta n^2 \ln^2 n)$ randomized algorithm to construct a box representation for any graph $G$ on $n$ vertices in $\lceil (\Delta + 2)\ln n \rceil$ dimensions, where $\Delta$ is the maximum degree of the graph. They also came up with a deterministic algorithm that runs in $O(n^4 \Delta )$ time. Here, we present an $O(n^2 \Delta^2 \ln n)$ deterministic algorithm that constructs the box representation for any graph in $\lceil (\Delta + 2)\ln n \rceil$ dimensions.
Resumo:
The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.
Resumo:
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a(1), b(1)] x [a(2), b(2)] x ... x [a(k), b(k)]. The boxicity of G, box(G), is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes; i.e., each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset, where S is the ground set and P is a reflexive, antisymmetric and transitive binary relation on S. The dimension of P, dim(P), is the minimum integer t such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P; i.e., S is the vertex set and two vertices are adjacent if and only if they are comparable in P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. It immediately follows that if P is a height-2 poset, then box(G(P)) <= dim(P) <= 2box(G(P)) since the underlying comparability graph of a height-2 poset is a bipartite graph. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with the extended double cover of G, denoted as G(c): Note that G(c) is a bipartite graph with partite sets A and B which are copies of V (G) such that, corresponding to every u is an element of V (G), there are two vertices u(A) is an element of A and u(B) is an element of B and {u(A), v(B)} is an edge in G(c) if and only if either u = v or u is adjacent to v in G. Let P(c) be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P(c)) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) = 2 tree width (G(P)) + 4, since boxicity of any graph is known to be at most its tree width + 2. In the other direction, using the already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta), which is an improvement over the best-known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-is an element of)) for any is an element of > 0 unless NP = ZPP.
Resumo:
Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel boxes in Rk. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split graphs below O(n0.5-ε)-factor, for any ε > 0 in polynomial time unless NP = ZPP. Till date, there is no well known graph class of unbounded boxicity for which even an nε-factor approximation algorithm for computing boxicity is known, for any ε < 1. In this paper, we study the boxicity problem on Circular Arc graphs - intersection graphs of arcs of a circle. We give a (2+ 1/k)-factor polynomial time approximation algorithm for computing the boxicity of any circular arc graph along with a corresponding box representation, where k ≥ 1 is its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model given, this can be improved to an additive 2-factor approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity is O(mn+n2) in both these cases and in O(mn+kn2) which is at most O(n3) time we also get their corresponding box representations, where n is the number of vertices of the graph and m is its number of edges. The additive 2-factor algorithm directly works for any Proper Circular Arc graph, since computing an NCA model for it can be done in polynomial time.
Resumo:
A $k$-box $B=(R_1,...,R_k)$, where each $R_i$ is a closed interval on the real line, is defined to be the Cartesian product $R_1\times R_2\times ...\times R_k$. If each $R_i$ is a unit length interval, we call $B$ a $k$-cube. Boxicity of a graph $G$, denoted as $\boxi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-boxes. Similarly, the cubicity of $G$, denoted as $\cubi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-cubes. It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan: Representing graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at CoRR, abs/cs/ 0607092, 2006.] that, for a graph $G$ with maximum degree $\Delta$, $\cubi(G)\leq \lceil 4(\Delta +1)\log n\rceil$. In this paper, we show that, for a $k$-degenerate graph $G$, $\cubi(G) \leq (k+2) \lceil 2e \log n \rceil$. Since $k$ is at most $\Delta$ and can be much lower, this clearly is a stronger result. This bound is tight. We also give an efficient deterministic algorithm that runs in $O(n^2k)$ time to output a $8k(\lceil 2.42 \log n\rceil + 1)$ dimensional cube representation for $G$. An important consequence of the above result is that if the crossing number of a graph $G$ is $t$, then $\boxi(G)$ is $O(t^{1/4}{\lceil\log t\rceil}^{3/4})$ . This bound is tight up to a factor of $O((\log t)^{1/4})$. We also show that, if $G$ has $n$ vertices, then $\cubi(G)$ is $O(\log n + t^{1/4}\log t)$. Using our bound for the cubicity of $k$-degenerate graphs we show that cubicity of almost all graphs in $\mathcal{G}(n,m)$ model is $O(d_{av}\log n)$, where $d_{av}$ denotes the average degree of the graph under consideration. model is O(davlogn).
Resumo:
This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.
Resumo:
Text segmentation and localization algorithms are proposed for the born-digital image dataset. Binarization and edge detection are separately carried out on the three colour planes of the image. Connected components (CC's) obtained from the binarized image are thresholded based on their area and aspect ratio. CC's which contain sufficient edge pixels are retained. A novel approach is presented, where the text components are represented as nodes of a graph. Nodes correspond to the centroids of the individual CC's. Long edges are broken from the minimum spanning tree of the graph. Pair wise height ratio is also used to remove likely non-text components. A new minimum spanning tree is created from the remaining nodes. Horizontal grouping is performed on the CC's to generate bounding boxes of text strings. Overlapping bounding boxes are removed using an overlap area threshold. Non-overlapping and minimally overlapping bounding boxes are used for text segmentation. Vertical splitting is applied to generate bounding boxes at the word level. The proposed method is applied on all the images of the test dataset and values of precision, recall and H-mean are obtained using different approaches.
Resumo:
The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.