947 resultados para Canopy gaps
Resumo:
The objective of this study was to assess the sward canopy structure of Brachiaria brizantha cv. Marandu pastures maintained in three grazing intensities under continuous stocking system during the rainy season, along with the behavior and performance of grazing beef heifers supplemented with mineral salt or an energy/protein supplement. Three levels of forage allowance were assessed: 2.0, 2.5 and 3.0 kg of forage/kg of live weight, combined with two supplements (ad libitum mineral salt, and an energy/protein supplement at 0.3% of live weight/day, supplied daily). The experiment was designed as a randomized block study with two replications. The supplements did not influence the variables related to the canopy structure. Canopy height was greater at higher forage allowances during the late summer and early fall. Similarly, the stem mass was greater in pastures with higher forage allowances. Animals fed protein supplement spent less time grazing than animals supplemented with mineral salt. Stocking rate was higher in pastures with lower forage allowance levels, which increased the live weight gain per grazing area. Daily weight gain did not vary according to the forage allowance levels. The use of an energy/protein supplement did not affect the stocking rate; however, it increased individual live weight gain and live weight gain per grazing area compared with mineral salt supplementation. The use of energy/protein supplements is an efficient alternative to enhance animal performance and production under grazing systems during the rainy season
Resumo:
The objective of this study was to evaluate the Brachiaria brizantha cv. Marandu canopy structure maintained at different grazing heights under a continuous stocking rate and with a dietary supplementation strategy for the animals during the rainy season. This study also intended to observe the relationships of these variables with the grazing behaviors of the heifers. The effects of three canopy heights (15, 25 and 35 cm) were evaluated in association with three types of supplements: one mineral and two protein/energy supplements, the first with a high rumen degradable protein and energy and the others with a low ratio. Both the protein/energy supplements were provided at 0.3% of body weight/day. The experimental design was completely randomized, with two replications and repeated measures, and took place during the period from January to April 2008. The supplementation strategies did not affect any variable related to the canopy structure. Total and green herbage masses and the ratio of green/dead material increased with canopy height. The leaf/stem ratio was higher in the lowest canopy height: 15 cm. Changes in the canopy structure caused variations in the grazing behavior of the animals. Animals maintained in the 15-cm-tall pasture grazed for a longer time, increasing the time for each meal, but the number of meals was lower than that of the animals grazing within the 35-cm-tall pasture. The grazing time of animals receiving the energy/protein supplement was lower only in the period of the day during which it was supplied. Canopy structure is affected by sward height, and changes animal behavior. Supplementation does not affect the canopy structure of the pastures with similar heights.
Resumo:
We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST Clusters, mapped against the genomic sequence. Each pair of EST Clusters selected for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure of 211 human transcripts. The structure of several transcripts reported here was confirmed during the course of this project, through the generation of their corresponding full-length cDNA sequences. Nevertheless, for 21% of the validated TFUs, a full-length cDNA sequence is not yet available in public databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance transcripts expressed in a restricted Set of tissues as well as for the delineation of gene boundaries and alternatively spliced isoforms.
Resumo:
The germination of seeds of Psidium guajava L. (Myrtaceae) is controlled by phytochrome. Guava seeds can germinate with at least one hour per day of irradiation of high red:far-red ratio light preceeded or followed by shade light, indicating that phytochrome B controls germination in these conditions. Under alternating temperatures, in a range of at least 5degreesC, seeds will germinate in darkness, suggesting that in gaps of the canopy, when seeds are covered by a thin layer of soil they will germinate once the alternating temperatures are experienced. Under these conditions phytochrome A is responsible for the control of guava seed germination.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We compute the survival probability {vertical bar S vertical bar(2)} of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on WW -> H fusion processes and show that the resulting {vertical bar S vertical bar(2)} decreases with the increase of the energy of the incoming hadrons; in line with the available experimental data for LRG. We obtain {vertical bar S vertical bar(2)} = 27.6 +/- 7.8% (18.2 +/- 17.0%) at Tevatron (CERN-LHC) energy for a dynamical gluon mass m(g) = 400 MeV. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Efeito da temperatura e a participação do fitocromo no controle da germinação de sementes de embaúba
Resumo:
A embaúba é considerada uma espécie pioneira que ocorre na mata Atlântica, principalmente em borda da mata ou em matas secundárias. O presente trabalho teve como objetivo a análise da influência da temperatura e do modo de ação da luz através de curva de fluência resposta, para a melhor compreensão do comportamento das sementes desta espécie. Através de incubações isotérmicas foi determinada que a temperatura ótima de germinação de sementes de Cecropia glaziovi, situa-se entre 25 e 30ºC e a saturação da indução da germinação com luz branca mediada pelo fitocromo ocorreu com 1W.m-2. Embora as sementes de embaúba necessitem de luz de alta razão de V:VE para a indução do processo, a germinação ocorreu em fluência baixa de luz branca, indicando alta sensibilidade dessas sementes ao ambiente aberto, como borda de matas e pequenas clareiras. Estas características indicam a participação do fitocromo B no controle da germinação de sementes nesta espécie.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that soft color rearrangement of final states can account for the appearance of rapidity gaps between jets. In the color evaporation model the probability to form a gap is simply determined by the color multiplicity of the final state. This model has no free parameters and reproduces all data obtained by the ZEUS, H1, DØ, and CDF Collaborations. ©1999 The American Physical Society.
Resumo:
We show that soft color rearrangement of final states can account for the appearance of rapidity gaps between jets. In the color evaporation model the probability to form a gap is simply determined by the color multiplicity of the final state. This model has no free parameters and reproduces all data obtained by the ZEUS, H1, DØ, and CDF collaborations. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non-destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable 'diameter at breast height' were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha-1 above-ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252-446 t ha-1) with only three equations providing estimates within 34 t ha-1 (12.5%) of the site value. Our use of multiple species-specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non-destructively measure the biomass in a complex forest using an on-site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively. © 2007 Ecological Society of Australia.
Resumo:
Includes bibliography