329 resultados para Caenorhabditis Briggsae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Menthe piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia colt biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To investigate LIN28B gene variants in children with idiopathic central precocious puberty (CPP). Patients and Methods: We studied 178 Brazilian children with CPP (171 girls, 16.8% familial cases). A large multiethnic group (1,599 subjects; Multiethnic Cohort, MEC) was used as control. DNA analysis and biochemical in vitro studies were performed. Results: A heterozygous LIN28B variant, p. H199R, was identified in a girl who developed CPP at 5.2 years. This variant was absent in 310 Brazilian control individuals, but it was found in the same allele frequency in women from the MEC cohort, independent of the age of menarche. Functional studies revealed that when ectopically expressed in cells, the mutant protein was capable of binding pre-let-7 microRNA and inhibiting let-7 expression to the same extent as wild-type Lin28B protein. Other rare LIN28B variants (p.P173P, c.198+32_33delCT, g.9575731A>C and c.-11C>T) were identified in CPP patients and controls. Therefore, no functional mutation was identified. Conclusion: In vitro studies revealed that the rare LIN28B p.H199R variant identified in a girl with CPP does not affect the Lin28B function in the regulation of let-7 expression. Although LIN28B SNPs were associated with normal pubertal timing, rare variations in this gene do not seem to be commonly involved in the molecular pathogenesis of CPP. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bei der Parkinsonschen Krankheit kommt es zu einer selektiven Degeneration der dopaminergen Neurone in der Substantia nigra pars compacta. Die Rolle des oxidativen Stresses in der Pathogenese dieser Erkrankung konnte an post mortem Untersuchungen der Parkinson-Patienten, wie auch an zahlreichen in vitro und in vivo Modellen bestätigt werden. Die Anwendung von Antioxidantien wurde als therapeutische Strategie der Parkinsonschen Krankheit vorgeschlagen. In dieser Hinsicht wurden bereits antioxidative Substanzen in klinischen Studien evaluiert. Klinische Studien mit Antioxidantien haben jedoch bislang nur wenig überzeugende Ergebnisse erbracht, mit Ausnahme des Einsatzes des Ubichinons (Coenzym Q). Eine kritische Analyse der klinischen Studien lässt zusammenfassen, dass auf Seiten der verwendeten Antioxidantien noch massiver Optimierungsbedarf besteht. Für einen erfolgreichen therapeutischen Einsatz von Antioxidantien bei dieser Krankheit sind folgende Eigenschaften der Substanzen von höchster Bedeutung: i) maximale neuroprotektive Aktivität bei geringen Dosen; ii) geringe Nebenwirkungen; iii) eine hohe Blut-Hirn-Schrankengängigkeit.In dieser Arbeit wurde das neuroprotektive Potential von drei Bisarylimin-basierten antioxidativen Strukturen (Phenothiazin, Iminostilben und Phenoxazin) in in vitro und in vivo Parkinson-Modellsystemen evaluiert. Beide experimentellen Modelle basieren auf der Wirkung der mitochondrialen Komplex I Inhibitoren 1-Methyl-4-Phenylpyridin (MPP+) und Rotenon, welche pathophysiologische Charakteristika der Parkinsonschen Krankheit reproduzieren. Unsere in vitro Untersuchungen an primären Neuronen des Mittelhirns und der klonalen SH-SY5Y-Neuroblastomazelllinie konnten zeigen, dass die Komplex I Inhibition krankheitsspezifische zelluläre Merkmale induziert, wie die Abnahme der antioxidativen Verteidigungskapazität und Verlust des mitochondrialen Membranpotentials. Zusätzlich kommt es in primären Neuronen des Mittelhirns zur selektiven Degeneration dopaminerger Neurone, welche in der Parkinsonschen Erkrankung besonders betroffen sind. Ko-Inkubation der in vitro Modelle mit Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (50 nM) halten die pathologischen Prozesse fast vollständig auf. In vivo Untersuchungen am MPP+- und Rotenon-basierten Caenorhabditis elegans (C. elegans) Modell bestätigen das neuroprotektive Potential der Bisarylimine. Hierfür wurde eine transgene C. elegans Linie mithilfe einer dopaminerg spezifischen DsRed2- (Variante des rot fluoreszierenden Proteins von Discosoma sp.)-Expression und pan-neuronaler CFP- (cyan fluoreszierendes Protein)-Expression zur Visualisierung der dopaminergen Neuronenpopulation in Kontrast zum Gesamtnervensystem erstellt. Behandlung des C. elegans mit MPP+ und Rotenon im larvalen und adulten Stadium führt zu einer selektiven Degeneration dopaminerger Neurone, sowie zum Entwicklungsarrest der larvalen Population. Die dopaminerge Neurodegeneration, wie auch weitere phänotypische Merkmale des C. elegans Modells, können durch Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (500 nM) komplett verhindert werden. Ein systemischer Vergleich aromatischer Bisarylimine mit bekannten, gut charakterisierten Antioxidantien, wie α-Tocopherol (Vitamin E), Epigallocatechingallat und β-Catechin, zeigt, dass effektive Konzentrationen für Phenothiazin, Iminostilben und Phenoxazin um Zehnerpotenzen niedriger liegen im Vergleich zu natürlichen Antioxidantien. Der Wirkungsmechanismus der Bisarylimine konnte in biochemischen und in vitro Analysen, sowie in Verhaltensuntersuchungen an C. elegans von der Wirkungsweise strukturell ähnlicher, neuroleptisch wirkender Phenothiazin-Derivate differenziert werden. Die Analyse des dopaminerg-gesteuerten Verhaltens (Beweglichkeit) in C. elegans konnte verdeutlichen, dass antioxidative und Dopaminrezeptor-bindende Eigenschaften der Bisaryliminstrukturen sich gegenseitig ausschließen. Diese qualitativen Merkmale unterscheiden Bisarylimine fundamental von klinisch angewandten Neuroleptika (Phenothiazin-Derivate), welche als Dopaminrezeptor-Antagonisten zur Behandlung psychischer Erkrankungen klinisch eingesetzt werden.Aromatische Bisarylimine (Phenothiazin, Iminostilben und Phenoxazin) besitzen günstige strukturelle Eigenschaften zur antioxidativ-basierter Neuroprotektion. Durch die Anwesenheit der antioxidativ wirkenden, nicht-substituierten Iminogruppe unterscheiden sich Bisarylimine grundlegend von neuroleptisch-wirkenden Phenothiazin-Derivaten. Wichtige strukturelle Voraussetzungen eines erfolgreichen antioxidativen Neuropharmakons, wie eine hohe Radikalisierbarkeit, die stabile Radikalform und der lipophile Charakter des aromatischen Ringsystems, werden in der Bisaryliminstruktur erfüllt. Antioxidative Bisarylimine könnten in der Therapie der Parkinsonschen Krankheit als eine effektive neuroprotektiv-therapeutische Strategie weiter entwickelt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5' UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin. Here we uncover a novel regulatory pathway for cyclic AMP (cAMP) signaling by the phosphatase calcineurin which is also evolutionarily conserved in Caenorhabditis elegans. We found that calcineurin binds directly to and inhibits the proteosomal degradation of cAMP-hydrolyzing phosphodiesterase 4D (PDE4D). We show that ubiquitin conjugation and proteosomal degradation of PDE4D are controlled by a cullin 1-containing E(3) ubiquitin ligase complex upon dual phosphorylation by casein kinase 1 (CK1) and glycogen synthase kinase 3beta (GSK3beta) in a phosphodegron motif. Our findings identify a novel signaling process governing G-protein-coupled cAMP signal transduction-opposing actions of the phosphatase calcineurin and the CK1/GSK3beta protein kinases on the phosphodegron-dependent degradation of PDE4D. This novel signaling system also provides unique functional insights into the complications elicited by CsA in transplant patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molluscan preparations have yielded seminal discoveries in neuroscience, but the experimental advantages of this group have not, until now, been complemented by adequate molecular or genomic information for comparisons to genetically defined model organisms in other phyla. The recent sequencing of the transcriptome and genome of Aplysia californica, however, will enable extensive comparative studies at the molecular level. Among other benefits, this will bring the power of individually identifiable and manipulable neurons to bear upon questions of cellular function for evolutionarily conserved genes associated with clinically important neural dysfunction. Because of the slower rate of gene evolution in this molluscan lineage, more homologs of genes associated with human disease are present in Aplysia than in leading model organisms from Arthropoda (Drosophila) or Nematoda (Caenorhabditis elegans). Research has hardly begun in molluscs on the cellular functions of gene products that in humans are associated with neurological diseases. On the other hand, much is known about molecular and cellular mechanisms of long-term neuronal plasticity. Persistent nociceptive sensitization of nociceptors in Aplysia displays many functional similarities to alterations in mammalian nociceptors associated with the clinical problem of chronic pain. Moreover, in Aplysia and mammals the same cell signaling pathways trigger persistent enhancement of excitability and synaptic transmission following noxious stimulation, and these highly conserved pathways are also used to induce memory traces in neural circuits of diverse species. This functional and molecular overlap in distantly related lineages and neuronal types supports the proposal that fundamental plasticity mechanisms important for memory, chronic pain, and other lasting alterations evolved from adaptive responses to peripheral injury in the earliest neurons. Molluscan preparations should become increasingly useful for comparative studies across phyla that can provide insight into cellular functions of clinically important genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKC$\alpha$ (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKC$\alpha$-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKC$\alpha$ has been shown to be isoform specific as it does not bind to PKC$\beta$II or PKC$\alpha$ in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKC$\alpha$ and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKC$\alpha$ requires the hinge and C-terminal domains of PKC$\alpha$. In vitro, PICK1 binds to PKC$\alpha$ and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKC$\alpha$-specific function at the level of the nuclear membrane. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival.