928 resultados para CT MRT Lunge Ventilation Parameter quantitativ ARDS
Resumo:
Objective: Postmortem radiology had in recent years appeared in the field of forensic medicine and is now considered by some authors as a good replacement for conventional autopsy and by others as a complementary examination. Although postmortem CT radiological imaging is very useful in demonstrating traumatic lesions, its utility is still quite limited in the cardiovascular field. This limitation could be minimized by the introduction of postmortem angiography. At the University Center of Legal Medicine of Lausanne, CT scans and postmortem multiphase CTangiography are used in cases with a suspicion of ischemic heart disease.Method: The goal of this presentation is to demonstrate some correlations between postmortem CT, CTangiography and conventional autopsy examination in cases of ischemic heart disease.Results: We observed that the native CT scan can show only some pathological findings as cardiac tamponade and calcifications of coronary arteries. However, postmortem angiography allows a better visualization of coronary arteries and evaluation of stenosis and occlusion as well as better imaging of soft tissue.Conclusion: The interpretation of postmortem modern radiology is a new field for both forensic pathologists and radiologists who have to learn to read the postmortem modified images. The information obtained from both parties can help to further the understanding of CT and CT angiography in postmortem cases.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.
Predictors and accuracy of abnormal CT perfusion in 1296 consecutive acute ischemic stroke patients.
Resumo:
Es va realitzar el II Workshop en Tomografia Computeritzada (TC) a Monells. El primer dia es va dedicar íntegrament a la utilització del TC en temes de classificació de canals porcines, i el segon dia es va obrir a altres aplicacions del TC, ja sigui en animals vius o en diferents aspectes de qualitat de la carn o els productes carnis. Al workshop hi van assistir 45 persones de 12 països de la UE. The II workshop on the use of Computed Tomography (CT) in pig carcass classification. Other CT applications: live animals and meat technology was held in Monells. The first day it was dedicated to the use of CT in pig carcass classification. The segond day it was open to otehr CT applications, in live animals or in meat and meat products quality. There were 45 assistants of 12 EU countries.
Resumo:
Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called 'virtual CT' to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum temperature elevation in the phantom (7% relative drop). Without any correction, the maximum temperature was down 6 °C (43% relative drop). We have developed an approach that allows for a reconstruction of a virtual CT dataset from MRI to perform phase correction in TcMRgFUS.
Resumo:
Multidetector row computed tomography (MDCT) is the imaging modality of reference for the diagnosis of bronchiectasis. MDCT may also detect a focal stenosis, a tumor or multiple morphologic abnormalities of the bronchial tree. It may orient the endoscopist towards the abnormal bronchi, and in all cases assess the extent of the bronchial lesions. The CT findings of bronchial abnormalities include anomalies of bronchial division and origin, bronchial stenosis, bronchial wall thickening, lumen dilatation, and mucoid impaction. The main CT features of bronchiectasis are increased bronchoarterial ratio, lack of bronchial tapering, and visibility of peripheral airways. Other bronchial abnormalities include excessive bronchial collapse at expiration, outpouchings and diverticula, dehiscence, fistulas, and calcifications.
Resumo:
Background: Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure. Objectives: To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval. Methods: On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV. Results: Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression. Conclusion: For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.
Resumo:
Introduction: In order to improve safety of pedicle screw placement several techniques have been developed. More recently robotically assisted pedicle insertion has been introduced aiming at increasing accuracy. The aim of this study was to compare this new technique with the two main pedicle insertion techniques in our unit namely fluoroscopically assisted vs EMG aided insertion. Material and methods: A total of 382 screws (78 thoracic,304 lumbar) were introduced in 64 patients (m/f = 1.37, equally distributed between insertion technique groups) by a single experienced spinal surgeon. From those, 64 (10 thoracic, 54 lumbar) were introduced in 11 patients using a miniature robotic device based on pre operative CT images under fluoroscopic control. 142 (4 thoracic, 138 lumbar) screws were introduced using lateral fluoroscopy in 27 patients while 176 (64 thoracic, 112 lumbar) screws in 26 patients were inserted using both fluoroscopy and EMG monitoring. There was no difference in the distribution of scoliotic spines between the 3 groups (n = 13). Screw position was assessed by an independent observer on CTs in axial, sagittal and coronal planes using the Rampersaud A to D classification. Data of lumbar and thoracic screws were processed separately as well as data obtained from axial, sagittal and coronal CT planes. Results: Intra- and interobserver reliability of the Rampersaud classification was moderate, (0.35 and 0.45 respectively) being the least good on axial plane. The total number of misplaced screws (C&D grades) was generally low (12 thoracic and 12 lumbar screws). Misplacement rates were same in straight and scoliotic spines. The only difference in misplacement rates was observed on axial and coronal images in the EMG assisted thoracic screw group with a higher proportion of C or D grades (p <0.05) in that group. Recorded compound muscle action potentials (CMAP) values of the inserted screws were 30.4 mA for the robot and 24.9mA for the freehand technique with a CI of 3.8 of the mean difference of 5.5 mA. Discussion: Robotic placement did improve the placement of thoracic screws but not that of lumbar screws possibly because our misplacement rates in general near that of published navigation series. Robotically assisted spine surgery might therefore enhance the safety of screw placement in particular in training settings were different users at various stages of their learning curve are involved in pedicle instrumentation.
Resumo:
An online algorithm for determining respiratory mechanics in patients using non-invasive ventilation (NIV) in pressure support mode was developed and embedded in a ventilator system. Based on multiple linear regression (MLR) of respiratory data, the algorithm was tested on a patient bench model under conditions with and without leak and simulating a variety of mechanics. Bland-Altman analysis indicates reliable measures of compliance across the clinical range of interest (± 11-18% limits of agreement). Resistance measures showed large quantitative errors (30-50%), however, it was still possible to qualitatively distinguish between normal and obstructive resistances. This outcome provides clinically significant information for ventilator titration and patient management.