989 resultados para COORDINATION CONDITIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The mechanisms underlying socioeconomic inequalities in mortality from cardiovascular diseases (CVD) are largely unknown. We studied the contribution of childhood socioeconomic conditions and adulthood risk factors to inequalities in CVD mortality in adulthood. Methods The prospective GLOBE study was carried out in the Netherlands, with baseline data from 1991, and linked with the cause of death register in 2007. At baseline, participants reported on adulthood socioeconomic position (SEP) (own educational level), childhood socioeconomic conditions (occupational level of respondent’s father), and a broad range of adulthood risk factors (health behaviours, material circumstances, psychosocial factors). This present study is based on 5,395 men and 6,306 women, and the data were analysed using Cox regression models and hazard ratios (HR). Results A low adulthood SEP was associated with increased CVD mortality for men (HR 1.84; 95% CI: 1.41-2.39) and women (HR 1.80; 95%CI: 1.04-3.10). Those with poorer childhood socioeconomic conditions were more likely to die from CVD in adulthood, but this reached statistical significance only among men with the poorest childhood socioeconomic circumstances. About half of the investigated adulthood risk factors showed significant associations with CVD mortality among both men and women, namely renting a house, experiencing financial problems, smoking, physical activity and marital status. Alcohol consumption and BMI showed a U-shaped relationship with CVD mortality among women, with the risk being significantly greater for both abstainers and heavy drinkers, and among women who were underweight or obese. Among men, being single or divorced and using sleep/anxiety drugs increased the risk of CVD mortality. In explanatory models, the largest contributor to adulthood CVD inequalities were material conditions for men (42%; 95% CI: −73 to −20) and behavioural factors for women (55%; 95% CI: -191 to −28). Simultaneous adjustment for adulthood risk factors and childhood socioeconomic conditions attenuated the HR for the lowest adulthood SEP to 1.34 (95% CI: 0.99-1.82) for men and 1.19 (95% CI: 0.65-2.15) for women. Conclusions Adulthood material, behavioural and psychosocial factors played a major role in the explanation of adulthood SEP inequalities in CVD mortality. Childhood socioeconomic circumstances made a modest contribution, mainly via their association with adulthood risk factors. Policies and interventions to reduce health inequalities are likely to be most effective when considering the influence of socioeconomic circumstances across the entire life course and in particular, poor material conditions and unhealthy behaviours in adulthood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Heat stress might attenuate the effects of carbohydrate on immunoendocrine responses to exercise by increasing endogenous glucose production and reducing the rate of exogenous carbohydrate oxidation. The authors compared the efficacy of carbohydrate consumption on immune responses to exercise in temperate vs. hot conditions. METHODS: Ten male cyclists exercised on 2 separate occasions in temperate (18.1 +/- 0.4 degrees C, 58% +/- 8% relative humidity) and on another 2 occasions in hot conditions (32.2 +/- 0.7 degrees C, 55% +/- 2% relative humidity). On each occasion, the cyclists exercised in a fed state for 90 min at approximately 60% VO2max and then completed a 16.1-km time trial. Every 15 min during the first 90 min of exercise, they consumed 0.24 g/kg body mass of a carbohydrate or placebo gel. RESULTS: Neutrophil counts increased during exercise in all trials (p < .05) and were significantly lower (40%, p = .006) after the carbohydrate than after the placebo trial in 32 degrees C. The concentrations of serum interleukin (IL)-6, IL-8, and IL-10 and plasma granulocyte-colony-stimulating factor, myeloperoxidase, and calprotectin also increased during exercise in all trials but did not differ significantly between the carbohydrate and placebo trials. Plasma norepinephrine concentration increased during exercise in all trials and was significantly higher (50%, p = .01) after the carbohydrate vs. the placebo trial in 32 degrees C. CONCLUSION: Carbohydrate ingestion attenuated neutrophil counts during exercise in hot conditions, whereas it had no effect on any other immune variables in either temperate or hot conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building information modeling (BIM) is an emerging technology and process that provides rich and intelligent design information models of a facility, enabling enhanced communication, coordination, analysis, and quality control throughout all phases of a building project. Although there are many documented benefits of BIM for construction, identifying essential construction-specific information out of a BIM in an efficient and meaningful way is still a challenging task. This paper presents a framework that combines feature-based modeling and query processing to leverage BIM for construction. The feature-based modeling representation implemented enriches a BIM by representing construction-specific design features relevant to different construction management (CM) functions. The query processing implemented allows for increased flexibility to specify queries and rapidly generate the desired view from a given BIM according to the varied requirements of a specific practitioner or domain. Central to the framework is the formalization of construction domain knowledge in the form of a feature ontology and query specifications. The implementation of our framework enables the automatic extraction and querying of a wide-range of design conditions that are relevant to construction practitioners. The validation studies conducted demonstrate that our approach is significantly more effective than existing solutions. The research described in this paper has the potential to improve the efficiency and effectiveness of decision-making processes in different CM functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the profits from 221 construction projects undertaken by an Australian building firm in the period 1910–1938 and examines the factors that influence the firm's profit levels. This involves a series of multiple regression analyses with three dependent variables representing profit and 26 independent variables representing economic conditions and project characteristics. From these, 11 models are derived of which two are chosen as having the best explanatory power in explaining approximately 72% of the variability in profit levels movements. The results show that unemployment, interest rates, level of construction activity in the state, change of wage level, inflation rate of building material and project value significantly influenced the firm's profit level during the period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage rise is one of the main factors which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers’ resources and manage voltage rise in residential LV networks. PV is considered as the customer RE source. The suggested coordination approach in this paper includes both localized control strategy, based on local measurement, and distributed control strategy based on consensus algorithm. This approach can completely avoid maximum permissible voltage limit violation. A typical residential LV network is used as the case study where the simulated results are shown to verify the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effect of various environmental conditions on the degree of hydration in hoof wall horn tissue from feral horses and investigate the effect of short-term foot soaking on moisture content in hoof wall and sole tissue in domestic horses. Animals: 40 feral horses from 3 environments (wet and boggy [n = 10], partially flooded [20], and constantly dry desert [10]) and 6 nonferal Quarter Horses. Procedures: The percentage of moisture content of hoof wall samples from feral horses was measured in vitro. In a separate evaluation, the percentage of moisture content of hoof wall and sole tissue was measured in the dry and soaked forefeet of Quarter Horses. Results: Mean ± SD percentage of moisture content was 29.6 ± 5.1%, 29.5 ± 5.8%, and 29.5 ± 2.9% for feral horses from the wet and boggy, partially flooded, and constantly dry desert environments, respectively. Moisture content did not differ among the 3 groups, nor did it differ between dry and soaked hoof wall samples from nonferal horses. However, soaking in water for 2 hours resulted in a significant increase in the percentage of moisture content of the sole. Conclusions and Clinical Relevance: Environmental conditions do not appear to affect moisture content in the hoof wall horn. Soaking horses' feet regularly in water would be unlikely to change the degree of hydration in the hoof wall horn but may further hydrate the sole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.