882 resultados para CONTINUOUS THERMODYNAMICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers 1,2,3, and as holographic beam steerers 4. Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect 5,6 in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2π/3 radians achieved so far in a 40μm thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 μs. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical fluids (SCFs) offer a wide range of opportunities as media for chemical reactions and supercritical CO2, ScCO2, is becoming increasingly important as a benign replacement for more toxic solvents.1 High pressure reactions, however, are more capital intensive than conventional low pressure processes. Therefore, supercritical fluids will only gain widespread acceptance in those areas where the fluids give real chemical advantages as well as environmental benefits. This lecture gives a brief account of the use of flow reactors for continuous reactions in supercritical fluids, particularly those of interest for the manufacture of fine chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamics of the displacive mechanism of plate-shaped phase alpha(1) was analyzed in beta'Cu-Zn alloys. It was proposed that the displacive transformation of the alpha(1) plate took place in the solute-depleted region formed in the parent phase during the incubation period. The thermodynamic analysis indicated that the driving force of alpha(1) transformation, Delta G, increased with the reduction of x(d), the solute concentration of the depleted region. And, Delta G could overcome-the transformation barrier with solute depletion to a certain degree. In addition, x(d) was higher than the equilibrium concentration in the phase diagram. Therefore, the shear formation of alpha(1) plate in the solute-depleted region was thermodynamically supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and computational studies on the dynamics of millimeter-scale cylindrical liquid jets are presented. The influences of the modulation amplitude and the nozzle geometry on jet behavior have been considered. Laser Doppler anemometry (LDA) was used in order to extract the velocity field of a jet along its length, and to determine the velocity modulation amplitude. Jet shapes and breakup dynamics were observed via shadowgraph imaging. Aqueous solutions of glycerol were used for these experiments. Results were compared with Lagrangian finite-element simulations with good quantitative agreement. © 2011 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing devices for communicating information to computers are bulky, slow to use, or unreliable. Dasher is a new interface incorporating language modelling and driven by continuous two-dimensional gestures, e.g. a mouse, touchscreen, or eye-tracker. Tests have shown that this device can be used to enter text at a rate of up to 34 words per minute, compared with typical ten-finger keyboard typing of 40-60 words per minute. Although the interface is slower than a conventional keyboard, it is small and simple, and could be used on personal data assistants and by motion-impaired computer users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical predictions of the diameters of continuous ink-jets downstream of long nozzles are generalized to include the important cases of ink-jet fluids and shorter nozzles where the velocity profile at the nozzle exit is undeveloped (non-parabolic). Comparisons of the new predictions with experiments and simulations are made for fairly long nozzles with tapered profiles and short nozzles with conical profiles; experimental and simulated profiles are also compared downstream of the nozzle exit for both industrial and large scale ink-jet print heads. Precise measurements of the un-modulated jet diameters downstream of the nozzle exit can set really useful limits to the possible shapes of the flow profile right at the nozzle exit, and in particular allow some assessment of the axial velocity gradients and fluid shear rates at the nozzle exit where direct speed measurement is usually impractical. Simulations allow further study of the relaxation of the velocity profile downstream of the nozzle exit, and are reported for both un-modulated and modulated CIJ jetting. Implications of this work include speeding up CIJ simulations, absolute calibration of the applied CIJ system modulation, and the likely magnitude of dynamic surface tension effects on observed CIJ satellite speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.