940 resultados para COMPOUND EMISSIONS
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
This paper analyses the international inequalities in CO2 emissions intensity for the period 1971- 2009 and assesses explanatory factors. Multiplicative, group and additive methodologies of inequality decomposition are employed. The first allows us to clarify the separated role of the carbonisation index and the energy intensity in the pattern observed for inequalities in CO2 intensities; the second allows us to understand the role of regional groups; and the third allows us to investigate the role of different fossil energy sources (coal, oil and gas). The results show that, first, the reduction in global emissions intensity has coincided with a significant reduction in international inequality. Second, the bulk of this inequality and its reduction are attributed to differences between the groups of countries considered. Third, coal is the main energy source explaining these inequalities, although the growth in the relative contribution of gas is also remarkable. Fourth, the bulk of inequalities between countries and its decline are explained by differences in energy intensities, although there are significant differences in the patterns demonstrated by different groups of countries.
Resumo:
This paper analyzes the carbon dioxide emissions of the services sectors subsystem of Uruguay in 2004. Services, with the exception of transport, are often considered intangible because of their low level of direct emissions. However, the provision of services requires inputs produced by other sectors, including several highly materialintensive sectors. Through input–output analysis we investigate the relationship between the services subsystem and the rest of the economy as regards carbon dioxide emissions. This approach allows us to study the importance of the set of services branches as a unit in the economic structure as well as to analyze in detail the relationship between the branches. The results depict that services’ direct emissions are the main component, as a consequence of transport-related sectors. However, the pollution that the services subsystem makes the rest of the economy produce is very significant, and it is almost all explained by non-transport-related sectors. This analysis is useful for determining the sectors in which mitigation policies are more effective, and whether they would be better tackled through technical improvements and better practices or through demand policies.
Resumo:
This paper uses the possibilities provided by the regression-based inequality decomposition (Fields, 2003) to explore the contribution of different explanatory factors to international inequality in CO2 emissions per capita. In contrast to previous emissions inequality decompositions, which were based on identity relationships (Duro and Padilla, 2006), this methodology does not impose any a priori specific relationship. Thus, it allows an assessment of the contribution to inequality of different relevant variables. In short, the paper appraises the relative contributions of affluence, sectoral composition, demographic factors and climate. The analysis is applied to selected years of the period 1993–2007. The results show the important (though decreasing) share of the contribution of demographic factors, as well as a significant contribution of affluence and sectoral composition.
Resumo:
We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.
Resumo:
This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) by using high resolution gas chromatography (HRGC). For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.
Resumo:
This research work aimed at determining the UVA effectiveness (UVA I/UV ratio), by diffuse transmittance analysis, of sunscreens developed with a bioactive substance, the rutin, associating or not with organic UVB-UVA filters incorporated at a phosphate-base O/W emulsion. Sunscreens provided conflicting and unpredictable results concerning the anti-UVA protection, specially, at the UVA I region. Possible interactions among the organic UV filters and the polyphenolic bioactive substance may have accounted with improvement or reduction of UV protection by a complex and not yet elucidated mechanism, probably regarding wavelength delocalization to superior or inferior values, by resonant molecule stabilization or destabilization.
Resumo:
The electrochemistry of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2- b]furan-4,5-dione ([Q]-PhNO2), on mercury was investigated. The first peak is consistent with a quasi-reversible one-electron reduction of the ortho-quinone, forming [Q-]-PhNO2, while the second one, bielectronic, corresponds to the simultaneous reduction of the latter radical to a dianion and the nitro group to a nitro radical anion. The second order rate constant, k disp, for the decay of [Q-]-PhNO2 is 15.188 x 10³ ± 827 mol"1 L s"1 and the t1/2 equals 0.06 s. E¹7Ic values for [Q]-PhNO2 and its precursor, nor-β-lapachone, are similar. The ease of semiquinone generation and its stability are parameters statistically relevant in the correlation biochemical/theoretical aspects.
Resumo:
Inclusion compound of rhodium(II) citrate with β-cyclodextrin in a 1:1 molar ratio was prepared using freeze-drying method. X-ray diffactometry, thermal analysis (TG/DTG/DSC), infrared and ¹H-NMR with ¹H spin lattice relaxation (¹H T1) measurements and 13C techniques were used to characterize the system prepared. The results indicated the formation of inclusion or association compounds between rhodium(II) citrate and β-cyclodextrin.
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
The B3LYP/6-31G (d) density functional theory (DFT) method was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4)]octane (TTTO) was investigated by calculating bond dissociation energy (BDE) at the unrestricted B3LYP/6-31G(d) level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to P2(1)/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC).
Resumo:
The objective in this Master’s Thesis was to determine VOC emissions from veneer drying in softwood plywood manufacturing. Emissions from plywood industry have become an important factor because of the tightened regulations worldwide. In this Thesis is researched quality and quantity of the VOCs from softwood veneer drying. One of the main objectives was to find out suitable cleaning techniques for softwood VOC emissions. In introduction part is presented veneer drying machines, wood mechanical and chemical properties. VOC control techniques and specified VOC limits are introduced also in the introduction part. Plywood mills have not had interest to VOC emissions previously nevertheless nowadays plywood mills worldwide must consider reduction of the emissions. This Thesis includes measuring of emissions from softwood veneer dryer, analyzation of measured test results and reviewing results. Different air conditions inside of the dryer were considered during planning of the measurements. Results of the emissions measurements were compared to the established laws. Results from this Thesis were softwood veneer dryer emissions in different air conditions. Emission control techniques were also studied for softwood veneer dryer emissions for further specific research.
Resumo:
A novel heteronuclear 3d-4f compound having formula NdCu3L3·13H2O (where H3L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L³ = C11H8 N2O4Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with theta = -35 K. The magnetic moment values decrease from 5.00µB at 303 K to 4.38µB at 76 K.
Resumo:
Adsorption is one of the most commonly used methods in water treatment processes. It is attractive due to it easy operation and the availability of a wide variety of commercial adsorbents. This doctoral thesis focuses on investigating and explaining the influence of external phase conditions (temperature, pH, ionic strength, acidity, presence of cosolutes) on adsorption phenomena. In order to cover a wide range of factors and phenomena, case studies were chosen from various fields where adsorption is applied. These include the adsorptive removal of surface active agents (used in cleaning chemicals, for example) from aqueous effluents, the removal of hormones (estradiol) from drinking water, and the adsorption of antibiotics onto silica. The latter can beused to predict the diffusion of antibiotics in the aquatic system if they are released into the environment. Also the adsorption of living cells on functionalized polymers to purify infected water streams was studied. In addition to these examples, the adsorptive separation of harmful compounds from internal water streams within a chemical process was investigated. The model system was removal of fermentation inhibitors from lignocelluloses hydrolyzates. The detoxification of the fermentation broth is an important step in the manufacture of bioethanol from wood, but has not been studied previously in connection with concentrated acid hydrolyzates. New knowledge on adsorption phenomena was generated for all of the applications investigated. In most cases, the results could be explained by combining classical theories for individual phenomena. As an example, it was demonstrated how liquid phase aggregation could explain abnormal-looking adsorption equilibrium data. In addition to the fundamental phenomena, also process performance was of interest. This aspect is often neglected in adsorption studies. It was demonstrated that adsorbents should not be selected for a target application based on their adsorption properties only, but regeneration of the spent adsorbent must be considered. It was found that using a suitable amount of organic co-solvent in the regeneration can significantly improve the productivity of the process.