897 resultados para CHRONIC LUNG INFECTION
Resumo:
Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.
Resumo:
Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.
Resumo:
BACKGROUND: There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth. OBJECTIVE: To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants. DESIGN/METHODS: A retrospective study was done of the 2,487 infants born without congenital anomalies at RESULTS: Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA 32 wk (OR = 0.41, 95% CI 0.27 - 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 - 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26-36 wks GA than AGA infants. CONCLUSIONS: Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at >/=32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease.
Resumo:
INTRODUCTION According to reports from observational databases, classic AIDS-defining opportunistic infections (ADOIs) occur in patients with CD4 counts above 500/µL on and off cART. Adjudication of these events is usually not performed. However, ADOIs are often used as endpoints, for example, in analyses on when to start cART. MATERIALS AND METHODS In the database, Swiss HIV Cohort Study (SHCS) database, we identified 91 cases of ADOIs that occurred from 1996 onwards in patients with the nearest CD4 count >500/µL. Cases of tuberculosis and recurrent bacterial pneumonia were excluded as they also occur in non-immunocompromised patients. Chart review was performed in 82 cases, and in 50 cases we identified CD4 counts within six months before until one month after ADOI and had chart review material to allow an in-depth review. In these 50 cases, we assessed whether (1) the ADOI fulfilled the SHCS diagnostic criteria (www.shcs.ch), and (2) HIV infection with CD4 >500/µL was the main immune-compromising condition to cause the ADOI. Adjudication of cases was done by two experienced clinicians who had to agree on the interpretation. RESULTS More than 13,000 participants were followed in SHCS in the period of interest. Twenty-four (48%) of the chart-reviewed 50 patients with ADOI and CD4 >500/µL had an HIV RNA <400 copies/mL at the time of ADOI. In the 50 cases, candida oesophagitis was the most frequent ADOI in 30 patients (60%) followed by pneumocystis pneumonia and chronic ulcerative HSV disease (Table 1). Overall chronic HIV infection with a CD4 count >500/µL was the likely explanation for the ADOI in only seven cases (14%). Other reasons (Table 1) were ADOIs occurring during primary HIV infection in 5 (10%) cases, unmasking IRIS in 1 (2%) case, chronic HIV infection with CD4 counts <500/µL near the ADOI in 13 (26%) cases, diagnosis not according to SHCS diagnostic criteria in 7 (14%) cases and most importantly other additional immune-compromising conditions such as immunosuppressive drugs in 14 (34%). CONCLUSIONS In patients with CD4 counts >500/ µL, chronic HIV infection is the cause of ADOIs in only a minority of cases. Other immuno-compromising conditions are more likely explanations in one-third of the patients, especially in cases of candida oesophagitis. ADOIs in HIV patients with high CD4 counts should be used as endpoints only with much caution in studies based on observational databases.
Resumo:
Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.
Resumo:
Background. The hepatitis C virus (HCV) epidemic is evolving rapidly in patients infected with human immunodeficiency virus (HIV). We aimed to describe changes in treatment uptake and outcomes of incident HCV infections before and after 2006, the time-point at which major changes in HCV epidemic became apparent. Methods. We included all adults with an incident HCV infection before June 2012 in the Swiss HIV Cohort Study, a prospective nationwide representative cohort of individuals infected with HIV. We assessed the following outcomes by time period: the proportion of patients starting an HCV therapy, the proportion of treated patients achieving a sustained virological response (SVR), and the proportion of patients with persistent HCV infection during follow-up. Results. Of 193 patients with an HCV seroconversion, 106 were diagnosed before and 87 after January 2006. The proportion of men who have sex with men increased from 24% before to 85% after 2006 (P < .001). Hepatitis C virus treatment uptake increased from 33% before 2006 to 77% after 2006 (P < .001). Treatment was started during early infection in 22% of patients before and 91% after 2006 (P < .001). An SVR was achieved in 78% and 29% (P = .01) of patients treated during early and chronic HCV infection. The probability of having a detectable viral load 5 years after diagnosis was 0.67 (95% confidence interval [CI], 0.58-0.77) in the group diagnosed before 2006 and 0.24 (95% CI, 0.16-0.35) in the other group (P < .001). Conclusions. In recent years, increased uptake and earlier initiation of HCV therapy among patients with incident infections significantly reduced the proportion of patients with replicating HCV.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with poor survival. Recent studies have improved understanding of IPF and new discoveries have led to novel treatment options, which now have become available for patients. In face of the newly available therapies we present an update on the pathophysiology and epidemiology of IPF. We discuss the typical clinical findings and elaborate diagnostic procedures according to current guidelines and our daily practice approach. The role of biomarkers will briefly be outlined. Finally, we discuss novel antifibrotic treatment options for IPF (pirfenidone, nintedanib) and the management of patients regarding to comorbidities and complications. Both pirfenidone and nintedanib were shown to reduce the progression of IPF and therefore represent novel therapeutic strategies in this so far untreatable chronic lung disease.
Resumo:
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Resumo:
Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^
Resumo:
Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling nucleoside that accumulates as a result of tissue hypoxia and damage. Adenosine has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The work presented in this dissertation utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations of adenosine in vivo result in pulmonary angiogenesis, and to identify factors that could potentially mediate this process. Results demonstrate that there is substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. Replacement enzyme therapy with pegylated ADA resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the ELR+ angiogenic chemokine CXCL1 were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its putative receptor, CXCR2, in ADA-deficient lung lysates resulted in the inhibition of angiogenic activity suggesting that CXCL1 signaling through the CXCR2 receptor is responsible for mediating the observed increases in angiogenesis. Taken together, these findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis and may therefore represent an important therapeutic target for the treatment of pathological angiogenesis. ^
Resumo:
Hepatitis B infection is a major public health problem of global proportions. It is estimated that 2 billion people worldwide are infected by the Hepatitis B virus (HBV) at some point, and 350 million are chronic carriers. The Centers for Disease Control and Prevention (CDC) report an incidence in the United States of 140,000–320,000 infections each year (asymptomatic and symptomatic), and estimate 1–1.25 million people are chronically infected. Hepatitis B and its chronic complications (cirrhosis of the liver, liver failure, hepatocellular carcinoma) responsible for 4,000–5,000 deaths in America each year. ^ One quarter of those who become chronic carriers develop progressive liver disease, and chronic HBV infection is thought to be responsible for 60 million cases of cirrhosis worldwide, surpassing alcohol as a cause of liver disease. Since there are few treatment options for the person chronically infected with Hepatitis B, and what is available is expensive, prevention is clearly best strategy for combating this disease. ^ Since the approval of the Hepatitis B vaccine in 1981, national and international vaccination campaigns have been undertaken for the prevention of Hepatitis B. Despite encouraging results, however, studies indicate that prevalence rates of Hepatitis B infection have not been significantly reduced in certain high risk populations because vaccination campaigns targeting those groups do not exist and opportunities for vaccination by individual physicians in clinical settings are often missed. Many of the high-risk individuals who go unvaccinated are women of childbearing age, and a significant proportion of these women become infected with the Hepatitis B virus (HBV) during pregnancy. Though these women are often seen annually or for prenatal care (because of the close spacing of their children and their high rate of fertility), the Hepatitis B vaccine series is seldom recommended by their health care provider. In 1993, ACOG issued a statement recommending Hepatitis B vaccination of pregnant women who were defined as high-risk by diagnosis of a sexually transmitted disease. ^ Hepatitis B vaccine has been extensively studied in the non-pregnant population. The overall efficacy of the vaccine in infants, children and adults is greater than 90%. In the small clinical trials to date, the vaccine seemed to be effective in those pregnant women receiving 3 doses; however, by using the usual 0, 1 and 6 month regimen, most pregnant women were unable to complete a full series during pregnancy. There is data now available supporting the use of an "accelerated" dosing schedule at 0, 1 and 4 months. This has not been evaluated in pregnant women. A clinical trial proving the efficacy of the 0, 1, 4 schedule and its feasibility in this population would add significantly to the body of research in this area, and would have implications for public health policy. Such a trial was undertaken in the Parkland Memorial Hospital Obstetrical Infectious Diseases clinic. In this study, the vaccine was very well tolerated with no major adverse events reported, 90% of fully vaccinated patients achieved immunity, and only Body Mass Index (BMI) was found to be a significant factor affecting efficacy. This thesis will report the results of the trial and compare it to previous trials, and will discuss barriers to implementation, lessons learned and implications for future trials. ^
Resumo:
The hepatitis B virus (HBV) nucleocapsid or core antigen (HBcAg) is extremely immunogenic during infection and after immunization. For example, during many chronic infections, HBcAg is the only antigen capable of eliciting an immune response, and nanogram amounts of HBcAg elicit antibody production in mice. Recent structural analysis has revealed a number of characteristics that may help explain this potent immunogenicity. Our analysis of how the HBcAg is presented to the immune system revealed that the HBcAg binds to specific membrane Ig (mIg) antigen receptors on a high frequency of resting, murine B cells sufficiently to induce B7.1 and B7.2 costimulatory molecules. This enables HBcAg-specific B cells from unprimed mice to take up, process, and present HBcAg to naive Th cells in vivo and to T cell hybridomas in vitro approximately 105 times more efficiently than classical macrophage or dendritic antigen-presenting cells (APC). These results reveal a structure–function relation for the HBcAg, confirm that B cells can function as primary APC, explain the enhanced immunogenicity of HBcAg, and may have relevance for the induction and/or maintenance of chronic HBV infection.
Resumo:
Hepatitis B viruses (HBV) and related viruses, classified in the Hepadnaviridae family, are found in a wide variety of mammals and birds. Although the chimpanzee has been the primary experimental model of HBV infection, this species has not been considered a natural host for the virus. Retrospective analysis of 13 predominantly wild-caught chimpanzees with chronic HBV infection identified a unique chimpanzee HBV strain in 11 animals. Nucleotide and derived amino acid analysis of the complete HBV genome and the gene coding for the hepatitis B surface antigen (S gene) identified sequence patterns that could be used to reliably identify chimpanzee HBV. This analysis indicated that chimpanzee HBV is distinct from known human HBV genotypes and is closely related to HBVs previously isolated from a chimpanzee, gibbons, gorillas, and orangutans.
Resumo:
The γ-herpesviruses, in contrast to the α- and β-herpesviruses, are not known to inhibit antigen presentation to CD8+ cytotoxic T lymphocytes (CTLs) during lytic cycle replication. However, murine γ-herpesvirus 68 causes a chronic lytic infection in CD4+ T cell-deficient mice despite the persistence of a substantial CTL response, suggesting that CTL evasion occurs. Here we show that, distinct from host protein synthesis shutoff, γ-herpesvirus 68 down-regulates surface MHC class I expression on lytically infected fibroblasts and inhibits their recognition by antigen-specific CTLs. The viral K3 gene, encoding a zinc-finger-containing protein, dramatically reduced the half-life of nascent class I molecules and the level of surface MHC class I expression and was by itself sufficient to block antigen presentation. The homologous K3 and K5 genes of the related Kaposi's sarcoma-associated virus also inhibited antigen presentation and decreased cell surface expression of HLA class I antigens. Thus it appears that an immune evasion strategy shared by at least two γ-herpesviruses allows continued lytic infection in the face of strong CTL immunity.
Resumo:
Effective antiviral agents are thought to inhibit hepatitis B virus (HBV) DNA synthesis irreversibly by chain termination because reverse transcriptases (RT) lack an exonucleolytic activity that can remove incorporated nucleotides. However, since the parameters governing this inhibition are poorly defined, fully delineating the catalytic mechanism of the HBV-RT promises to facilitate the development of antiviral drugs for treating chronic HBV infection. To this end, pyrophosphorolysis and pyrophosphate exchange, two nonhydrolytic RT activities that result in the removal of newly incorporated nucleotides, were characterized by using endogenous avian HBV replication complexes assembled in vivo. Although these activities are presumed to be physiologically irrelevant for every polymerase examined, the efficiency with which they are catalyzed by the avian HBV-RT strongly suggests that it is the first known polymerase to catalyze these reactions under replicative conditions. The ability to remove newly incorporated nucleotides during replication has important biological and clinical implications: these activities may serve a primer-unblocking function in vivo. Analysis of pyrophosphorolysis on chain-terminated DNA revealed that the potent anti-HBV drug β-l-(−)-2′,3′-dideoxy-3′-thiacytidine (3TC) was difficult to remove by pyrophosphorolysis, in contrast to ineffective chain terminators such as ddC. This disparity may account for the strong antiviral efficacy of 3TC versus that of ddC. The HBV-RT pyrophosphorolytic activity may therefore be a novel determinant of antiviral drug efficacy, and could serve as a target for future antiviral drug therapy. The strong inhibitory effect of cytoplasmic pyrophosphate concentrations on viral DNA synthesis may also partly account for the apparent slow rate of HBV genome replication.