983 resultados para CHAIN-REACTION ASSAY
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.
Resumo:
Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies.Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.
Resumo:
The presence of anti leptospiral agglutinins (microscopic agglutination test - MAT) and DNA of leptospires was investigated in the kidney and urine (Polymerase Chain Reaction - PCR) in samples collected at the time of slaughter of cattle originating from the dairy basin of Parnaíba, Piauí, Brazil, as also the lesions in kidney, lung, liver, uterus, ovary and placenta (histopathology and immunohistochemistry). In the MAT, Hardjo was the predominant serovar with the highest number of reagent animals for the strain Hardjobovis/Sponselee. Anti-leptospiral antigens were scored in epithelial cells, interstitial vascular endothelium, endothelium of glomerular capillaries and Bowman's capsule of 20 positive animals. Inflammatory cells were more common in the kidney. PCR was positive in urine and kidney tissue
Resumo:
Conidiobolomycosis is a granulomatous disease caused by the fungus Conidiobolus spp. in humans and animals. Traditional technique for diagnosis of the disease is isolation of the agent associated with the presence of typical clinical signs and pathological conditions. The aim of this study was to describe the development of a specific polymerase chain reaction (PCR) test for Conidiobolus lamprauges to detect the fungus in clinical samples. Samples from suspected animals were collected and submitted to isolation, histopathological analysis and amplification by PCR. DNA from tissues was subjected to PCR with fungi universal primers 18S rDNA gene, and specific primers were designed based on the same gene in C. lamprauges that generated products of about 540 bp and 222 bp respectively. The culture was positive in 26.6% of clinical samples. The PCR technique for C. lamprauges showed amplification of DNA from fresh tissues (80%) and paraffin sections (44.4%). In conclusion, the PCR technique described here demonstrated a high sensitivity and specificity for detection of fungal DNA in tissue samples, providing a tool for the rapid diagnosis of C. lamprauges.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
Visceral leishmaniasis is a chronic infectious disease caused by Leishmania infantum (synonym: Leishmania chagasi) and transmitted by the sandfly Lutzomyia longipalpis in Brazil. It is an endemic zoonosis in several regions of the country, including Belo Horizonte (State of Minas Gerais). In urban areas, the domestic dog is susceptible and considered the most important animal reservoir. However, L. infantum has been previously diagnosed in other species, including captive primates and canids. This study aimed to evaluate the presence of the agent DNA in captive animals as well as some free ranging animals from the Zoo-Botanical Foundation of Belo Horizonte by Polymerase Chain Reaction. Eighty one blood samples from primates, carnivores, ruminants, edentates, marsupial, and a monogastric herbivore were analyzed. Three primates Alouatta guariba (brown howler monkey), and two canids Speothos venaticus (bush dog) were positive, demonstrating the importance of leishmaniasis control in endemic areas for preservation of wildlife species in captivity.
Resumo:
In recent years haemosporidian infection by protozoa of the genus Plasmodium and Haemoproteus, has been considered one of the most important factors related to the extinction and/or population decline of several species of birds worldwide. In Brazil, despite the large avian biodiversity, few studies have been designed to detect this infection, especially among wild birds in captivity. Thus, the objective of this study was to analyze the prevalence of Plasmodium spp. and Haemoproteus spp. infection in wild birds in captivity in the Atlantic Forest of southeastern Brazil using microscopy and the polymerase chain reaction. Blood samples of 119 different species of birds kept in captivity at IBAMA during the period of July 2011 to July 2012 were collected. The parasite density was determined based only on readings of blood smears by light microscopy. The mean prevalence of Plasmodium spp. and Haemoproteus spp. infection obtained through the microscopic examination of blood smears and PCR were similar (83.19% and 81.3%, respectively), with Caracara plancus and Saltator similis being the most parasitized. The mean parasitemia determined by the microscopic counting of evolutionary forms of Plasmodium spp. and Haemoproteus spp. was 1.51%. The results obtained from this study reinforce the importance of the handling of captive birds, especially when they will be reintroduced into the wild.
Resumo:
Polymerase chain reaction (PCR) has been widely investigated for the diagnosis of tuberculosis. However, before this technique is applied on clinical samples, it needs to be well standardized. We describe the use of McFarland nephelometer, a very simple approach to determine microorganism concentration in solution, for PCR standardization and DNA quantitation, using Mycobacterium tuberculosis as a model. Tuberculosis is an extremely important disease for the public health system in developing countries and, with the advent of AIDS, it has also become an important public health problem in developed countries. Using Mycobacterium tuberculosis as a research model, we were able to detect 3 M. tuberculosis genomes using the McFarland nephelometer to assess micobacterial concentration. We have shown here that McFarland nephelometer is an easy and reliable procedure to determine PCR sensitivity at lower costs.
Resumo:
Polymerase chain reaction (PCR) with JB1 or REP consensus oligonucleotides and pulsed field gel electrophoresis (PFGE) were used to study genomic DNA extracted from 31 strains of enterococci. Eleven ATCC strains, representative of 11 species of Enterococcus, were initially tested by JB1-PCR, revealing that Enterococcus malodoratus and Enterococcus hirae presented identical banding patterns. Eight Enterococcus faecium isolates from Stanford University and 12 from São Paulo Hospital were studied by JB1-PCR, REP-PCR 1/2R and PFGE. Among the isolates from Stanford University, 5 genotypes were defined by JB1-PCR, 7 by REP-PCR 1/2R and 4 by PFGE. Among the isolates from São Paulo Hospital, 9 genotypes were identified by JB1-PCR, 6 by REP-PCR and 5 by PFGE. The three methods identified identical genotypes, but there was not complete agreement among them.
Resumo:
Acute promyelocytic leukemia (AML M3) is a well-defined subtype of leukemia with specific and peculiar characteristics. Immediate identification of t(15;17) or the PML/RARA gene rearrangement is fundamental for treatment. The objective of the present study was to compare fluorescent in situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR) and karyotyping in 18 samples (12 at diagnosis and 6 after treatment) from 13 AML M3 patients. Bone marrow samples were submitted to karyotype G-banding, FISH and RT-PCR. At diagnosis, cytogenetics was successful in 10 of 12 samples, 8 with t(15;17) and 2 without. FISH was positive in 11/12 cases (one had no cells for analysis) and positivity varied from 25 to 93% (mean: 56%). RT-PCR was done in 6/12 cases and all were positive. Four of 8 patients with t(15;17) presented positive RT-PCR as well as 2 without metaphases. The lack of RT-PCR results in the other samples was due to poor quality RNA. When the three tests were compared at diagnosis, karyotyping presented the translocation in 80% of the tested samples while FISH and RT-PCR showed the PML/RARA rearrangement in 100% of them. Of 6 samples evaluated after treatment, 3 showed a normal karyotype, 1 persistence of an abnormal clone and 2 no metaphases. FISH was negative in 4 samples studied and 2 had no material for analysis. RT-PCR was positive in 4 (2 of which showed negative FISH, indicating residual disease) and negative in 2. When the three tests were compared after treatment, they showed concordance in 2 of 6 samples or, when there were not enough cells for all tests, concordance between karyotype and RT-PCR in one. At remission, RT-PCR was the most sensitive test in detecting residual disease, as expected (positive in 4/6 samples). An incidence of about 40% of 5' breaks and 60% of 3' breaks, i.e., bcr3 and bcr1/bcr2, respectively, was observed.
Resumo:
Early diagnosis plays a vital role in controlling tuberculosis. The conventional methodology is slow, with results taking several weeks, in addition to having low sensitivity, especially in clinical paucibacillary samples. The objective of this study was to evaluate the use of polymerase chain reaction (PCR) on solid medium culture for a rapid diagnosis of tuberculosis, mainly in cases of negative sputum smears. Forty sputum samples were collected from inpatients with tuberculosis treated for less than 2 days. Bacilloscopy, PCR for sputum, culture on Löwestein-Jensen (LJ) solid medium, and daily PCR from culture were performed on each sample. DNA extracted from the BCG vaccine, which contains attenuated bacillus Calmette-Guérin, was used as the positive control. Smear microscopy showed 68.6% sensitivity, 80% specificity, 96% positive predictive value, and 26.7% negative predictive value, with culture on LJ medium as the gold standard. Culture at day 28 showed 74.3% sensitivity and 100% specificity. PCR of DNA extracted from sputum amplified a 1027-bp fragment of the 16s RNA gene, showing 22.9% sensitivity and 60% specificity. PCR performed with DNA extracted from daily culture showed that, from the 17th to the 40th day, the sensitivity (85.7%) and specificity (60%) were constant. We conclude that a 17-day culture is a good choice for rapid diagnosis and to interfere with the transmission chain of tuberculosis.
Resumo:
Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas - FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods.
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae. The polymerase chain reaction (PCR) has been applied to detect M. leprae in different clinical samples and urine seems to be attractive for this purpose. PCR was used to improve the sensitivity for diagnosing leprosy by amplifying a 151-bp PCR fragment of the M. leprae pra gene (PCR-Pra) in urine samples. Seventy-three leprosy patients (39 males and 34 females, 14 to 78 years old) were selected for leprosy diagnosis at a reference laboratory in Maringá, PR, Brazil. Of these, 36 were under anti-leprosy multidrug therapy with dapsone and rifampicin for tuberculoid (TT) and dapsone, rifampicin and clofazimine for borderline (BB) and lepromatous (LL) forms. The control group contained 50 healthy individuals without any clinical history of leprosy. DNA isolated from leprosy patients’ urine samples was successfully amplified by PCR-Pra in 46.6% (34/73) of the cases. The positivity of PCR-Pra for patients with the TT form was 75% for both patients under treatment and non-treated patients (P = 0.1306). In patients with the LL form, PCR-Pra positivity was 52 and 30% for patients under treatment and non-treated patients, respectively (P = 0.2386). PCR-Pra showed a statistically significant difference in detecting M. leprae between the TT and LL forms of leprosy in patients under treatment (P = 0.0033). Although the current study showed that the proposed PCR-Pra has some limitations in the detection of M. leprae, this method has the potential to be a useful tool for leprosy diagnosis mainly in TT leprosy where the AFB slit-skin smear is always negative.
Resumo:
The detection of mycotoxigenic fungi in foodstuff is important because their presence may indicate the possible associated mycotoxin contamination. Fusarium graminearum is a wheat pathogen and a producer of micotoxins. The polymerase chain reaction (PCR) has been employed for the specific identification of F. graminearum. However, this methodology has not been commonly used for detection of F. graminearum in food. Thus, the objective of the present study was to develop a molecular methodology to detect F. graminearum in commercial samples of bulgur wheat. Two methods were tested. In the first method, a sample of this cereal was contaminated with F. graminearum mycelia. The genomic DNA was extracted from this mixture and used in a F. graminearum specific PCR reaction. The F. graminearum species was detected only in samples that were heavily contaminated. In the second method, samples of bulgur wheat were inoculated on a solid medium, and isolates having F. graminearum culture characteristics were obtained. The DNA extracted from these isolates was tested in F. graminearum specific PCR reactions. An isolate obtained had its trichothecene genotype identified by PCR. The established methodology could be used in surveys of food contamination with F. graminearum.