922 resultados para CATIONIC PORPHYRINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New tetraruthenated manganese (III) porphyrins were synthesized and characterized (P-31 NMR, cyclic voltammetry, UV-Vis). This new system presents four units of cationic ``[RuCl(dppb)(X-bipy)](+)``. The electrochemical and catalytic properties of the central manganese (III) show dependence on the characteristics of the peripheral ruthenium complexes as evidenced by the Mn-(III)/Mn-(II) reduction potential. The catalytic oxidation reactions of olefins, cyclohexene and cyclohexane, were carried out in the presence of tetrapyridyl manganese (III) porphyrins containing cationic ruthenium complex and using iodosylbenzene as oxygen donor. The performance of these new tetraruthenated porphyrins systems were evaluated and compared with the manganese porphyrin. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic supported bilayers on latex are useful to isolate and immobilize oppositely charged proteins as a monomolecular layer over a range of low protein concentrations and particle number densities. Cholera toxin (CT) from Vibrio cholerae, an 87 kDa AB(5) hexameric protein and bovine serum albumin (BSA) self-assembled on dioctadecyldimethylammonium bromide (DODAB) supported bilayers with high affinity yielding highly organized and monodisperse particulates at 5 x 10(9) particles/mL, over a range of low protein concentrations (0-0.025 mg/mL BSA or CT). Protein association onto the bilayer-covered polystyrene sulfate (PSS) was determined from adsorption isotherms, dynamic light scattering for size distributions and zeta-potential analysis revealing a monomolecular, thin and highly organized protein layer surrounding each particle with potential for biospecific recognition such as antigen-antibody, receptor-ligand, hybridization of oligonucleotide sequences, all of them important in immunodiagnosis, selective biomolecular chromatographic separations, microarrays design and others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between giant bacteriophage DNA and cationic biomimetic particles was characterized from sizing by dynamic light-scattering, zeta-potential analysis, turbidimetry, determination of colloid stability, visualization from atomic force microscopy (AFM), and determination of cytotoxicity against E. coli from colony forming unities counting. First, polystyrene sulfate (PSS) particles with different sizes were covered by a dioctadecyldimethylammonium bromide (DODAB) bilayer yielding the so-called cationic biomimetic particles (PSS/DODAB). These cationic particles are highly organized, present a narrow size distribution and were obtained over a range of particle sizes. Thereafter, upon adding lambda, T5 or T2-DNA to PSS/DODAB particles, supramolecular assemblies PSS/DODAB/DNA were obtained and characterized over a range of DNA concentrations and particle sizes (80-700 nm). Over the low DNA concentration range, PSS/DODAB/DNA assemblies were cationic, colloidally stable with moderate polydispersity and highly cytotoxic against E. coli. From DNA concentration corresponding to charge neutralization, neutral or anionic supramolecular assemblies PSS/DODAB/DNA exhibited low colloid stability, high polydispersity and moderate cytotoxicity. Some nucleosome mimetic assemblies were observed by AFM at charge neutralization (zeta-potential equal to zero).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between cationic bilayer fragments and a model oligonucleotide was investigated by differential scanning calorimetry, turbidimetry, determination of excimer to monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidyl-choline in bilayer fragment dispersions and dynamic light scattering for sizing and zeta-potential analysis. Salt (Na(2)HPO(4)), mononucleotide (2`-deoxyadenosine-5`-monophosphate) or poly (dA) oligonucleotide (3`-AAA AAA AAA A-5`) affected structure and stability of dioctadecyldimethylammonium bromide bilayer fragments. Oligonucleotide and salt increased bilayer packing due to bilayer fragment fusion. Mononucleotide did not reduce colloid stability or did not cause bilayer fragment fusion. Charge neutralization of bilayer fragments by poly (dA) at 1:10 poly (dA):dioctadecyldimethylammonium bromide molar ratio caused extensive aggregation, maximal size and zero of zeta-potential for the assemblies. Above charge neutralization, assemblies recovered colloid stability due to charge overcompensation. For bilayer fragments/poly (dA), the nonmonotonic behavior of colloid stability as a function of poly (dA) concentration was unique for the oligonucleotide and was not observed for Na(2)HPO(4) or 2`-deoxyadenosine-5`-monophosphate. For the first time, such interactions between cationic bilayer fragments and mono- or oligonucleotide were described in the literature. Bilayer fragments/oligonucleotide assemblies may find interesting applications in drug delivery. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CM C, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta= 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of p. aeruginosa viability (10(7) CFU/mL) at 1 or 2 mu g/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 mu g/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin(3MMe)cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core. The resulting creamlike product exhibited enhanced photodynamic activity but negligible cytotoxicity towards HeLa cells. The polymeric micro/nanocapsule formulation was found to be about 4 times more phototoxic than the respective phosphatidylcholine lipidic emulsion, demonstrating high potentiality for photodynamic therapy applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutral complex [HgPh(dmpymt)] 1 (dmpymtH = 4,6-dimethylpyrimidine-2(1H)-thione) reacts with HBF(4) to give the cationic complex [HgPh(dmpymtH)][BF(4)] 2. The X-ray molecular structure of the later revealed a [2+1] coordination sphere about the mercury(II) atom (C-Hg-S and Hg center dot center dot center dot N). In the dinuclear complex [(HgPh)(2)(mu-dtu)] 3 [dtuH(2) = 2,4(1H,3H)-pyrimidinedithione or dithiouracil] the coordination spheres are also [2+1] although dissimilar regarding the Hg center dot center dot center dot N secondary bonds. NMR spectroscopy ((1)H, (13)C and (199)Hg) studies were undertaken in solution and the results discussed in the light of the X-ray structures. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topical formulations of piroxicam were evaluated by determination of their in vitro release and in vivo anti-inflammatory effect. The in vitro release assay demonstrated that the microemulsion (ME) systems provided a reservoir effect for piroxicam release. However, the incorporation of the ME into carboxyvinilic gel provoked a greater reduction in the release of piroxicam than the ME system alone. Anti-inflammatory activity was carried out by the cotton pellet granuloma inhibition bioassay. Topical anti-inflammatory effect of the piroxicam inclusion complex/ME contained in carboxyvinilic gel showed significant inhibition of the inflammation process (36.9%, P < 0.05). Subcutaneous administration of the drug formulations showed a significant effect on the inhibition of inflammation, 68.8 and 70.5%, P <0.05, when the piroxicam was incorporated in ME and in the combined system beta -cyclodextrin (B-CD)/ME, respectively, relative to the buffered piroxicam (42.2%). These results demonstrated that the ME induced prolonged effects, providing inhibition of the inflammation for 9 days after a single dose administration. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microemulsions (ME) containing hexadecyltrimethylammonium bromide (HTAB)/ethanol as surfactant, isopropylmyristate (IM) or butylstearate (BS) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant surfactant/cosurfactant molar ratio (1:5) by titration in order to characterize the proportions between the components to obtain clear systems. Oil in water microemulsions were prepared in a wide range of phase volume (phi). UV-vis absorption spectra of naproxen at pH 5.5 showed that the solubility of Np increases significantly in the presence of O/W ME in high phase volumes. For both, IM and BS microemulsions, the dynamic light scattering experiments showed that the size of the oil droplets remains constant in low values of phi, increasing abruptly in high phi values. Phase solubility study revealed that for both IM and BS microemulsions, the drug incorporation followed a straight-line profile in all range of phi. The data could be analyzed through the phase-separation model and the association constants (K) calculated varied from 27 to 90 M-1, depending on the pH and on the microemulsion oil phase. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)