220 resultados para CARDIODESFIBRILADOR IMPLANTABLE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Device-based remote monitoring (RM) has been linked to improved clinical outcomes at short to medium-term follow-up. Whether this benefit extends to long-term follow-up is unknown. We sought to assess the effect of device-based RM on long-term clinical outcomes in recipients of implantable cardioverter-defibrillators (ICD). METHODS: We performed a retrospective cohort study of consecutive patients who underwent ICD implantation for primary prevention. RM was initiated with patient consent according to availability of RM hardware at implantation. Patients with concomitant cardiac resynchronization therapy were excluded. Data on hospitalizations, mortality and cause of death were systematically assessed using a nationwide healthcare platform. A Cox proportional hazards model was employed to estimate the effect of RM on mortality and a composite endpoint of cardiovascular mortality and hospital admission due to heart failure (HF). RESULTS: 312 patients were included with a median follow-up of 37.7months (range 1 to 146). 121 patients (38.2%) were under RM since the first outpatient visit post-ICD and 191 were in conventional follow-up. No differences were found regarding age, left ventricular ejection fraction, heart failure etiology or NYHA class at implantation. Patients under RM had higher long-term survival (hazard ratio [HR] 0.50, CI 0.27-0.93, p=0.029) and lower incidence of the composite outcome (HR 0.47, CI 0.27-0.82, p=0.008). After multivariate survival analysis, overall survival was independently associated with younger age, higher LVEF, NYHA class lower than 3 and RM. CONCLUSION: RM was independently associated with increased long-term survival and a lower incidence of a composite endpoint of hospitalization for HF or cardiovascular mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the challenges to biomedical engineers proposed by researchers in neuroscience is brain machine interaction. The nervous system communicates by interpreting electrochemical signals, and implantable circuits make decisions in order to interact with the biological environment. It is well known that Parkinson’s disease is related to a deficit of dopamine (DA). Different methods has been employed to control dopamine concentration like magnetic or electrical stimulators or drugs. In this work was automatically controlled the neurotransmitter concentration since this is not currently employed. To do that, four systems were designed and developed: deep brain stimulation (DBS), transmagnetic stimulation (TMS), Infusion Pump Control (IPC) for drug delivery, and fast scan cyclic voltammetry (FSCV) (sensing circuits which detect varying concentrations of neurotransmitters like dopamine caused by these stimulations). Some softwares also were developed for data display and analysis in synchronously with current events in the experiments. This allowed the use of infusion pumps and their flexibility is such that DBS or TMS can be used in single mode and other stimulation techniques and combinations like lights, sounds, etc. The developed system allows to control automatically the concentration of DA. The resolution of the system is around 0.4 µmol/L with time correction of concentration adjustable between 1 and 90 seconds. The system allows controlling DA concentrations between 1 and 10 µmol/L, with an error about +/- 0.8 µmol/L. Although designed to control DA concentration, the system can be used to control, the concentration of other substances. It is proposed to continue the closed loop development with FSCV and DBS (or TMS, or infusion) using parkinsonian animals models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arrhythmology focuses on the diagnosis and treatment of heart rhythm disorders and their complications, and has undergone a dramatic evolution over the past two decades. The widespread use of catheter ablation, the introduction of implantable cardioverter defibrillators for the prevention of sudden cardiac death and, finally, the development of cardiac resynchronization therapy led to a gradual loss of the impact of antiarrhythmic drugs as a therapeutic approach. This report was performed as a result of an internship performed in Cardiac Physiology with the duration of 400 hours. The main goal of the internship was to strengthen theoretical knowledge and acquire practical experience in the varied fields of arrhythmology, especially in the areas of Cardiac Pacing and Electrophysiology. During the internship were performed 41 electrophysiologic studies, where Atrioventricular Node Reentrant Tachycardia and Atrial Fibrillation were the most observed arrhythmias. New technologies such as three-dimensional mapping for electrophysiology studies are developing quickly and being use on a daily basis, as they prove to have safe and higher success rates. The proof is that in approximately half of the studies, one of the two mapping systems available, Carto or NavX, was used. In addition, were interrogated 283 pacemakers during the pacing clinics, being the dual chamber with DDD pacing mode the most encountered device. A large number of devices with Cardiac Resynchronization Therapy and/or Implantable Cardioverter Defibrillators were also observed. This report is divided into three chapters. Chapter I is constituted by a revision of the literature and includes concepts such as definition and mechanisms of cardiac arrhythmias; a brief description of the varied diagnostic tools and its recommendations; and a presentation of the different therapeutic approaches available and its indications. The second chapter is a descriptive drawing of the activity performed in the modules of Electrophysiology and Pacing. Lastly, the chapter III presents two clinical cases in Electrophysiology considered interesting from a clinical point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this trial was to study the long-term effects of intravenous (IV) metoprolol administration before reperfusion on left ventricular (LV) function and clinical events. Early IV metoprolol during ST-segment elevation myocardial infarction (STEMI) has been shown to reduce infarct size when used in conjunction with primary percutaneous coronary intervention (pPCI). The METOCARD-CNIC (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction) trial recruited 270 patients with Killip class ≤II anterior STEMI presenting early after symptom onset (<6 h) and randomized them to pre-reperfusion IV metoprolol or control group. Long-term magnetic resonance imaging (MRI) was performed on 202 patients (101 per group) 6 months after STEMI. Patients had a minimal 12-month clinical follow-up. Left ventricular ejection fraction (LVEF) at the 6 months MRI was higher after IV metoprolol (48.7 ± 9.9% vs. 45.0 ± 11.7% in control subjects; adjusted treatment effect 3.49%; 95% confidence interval [CI]: 0.44% to 6.55%; p = 0.025). The occurrence of severely depressed LVEF (≤35%) at 6 months was significantly lower in patients treated with IV metoprolol (11% vs. 27%, p = 0.006). The proportion of patients fulfilling Class I indications for an implantable cardioverter-defibrillator (ICD) was significantly lower in the IV metoprolol group (7% vs. 20%, p = 0.012). At a median follow-up of 2 years, occurrence of the pre-specified composite of death, heart failure admission, reinfarction, and malignant arrhythmias was 10.8% in the IV metoprolol group versus 18.3% in the control group, adjusted hazard ratio (HR): 0.55; 95% CI: 0.26 to 1.04; p = 0.065. Heart failure admission was significantly lower in the IV metoprolol group (HR: 0.32; 95% CI: 0.015 to 0.95; p = 0.046). In patients with anterior Killip class ≤II STEMI undergoing pPCI, early IV metoprolol before reperfusion resulted in higher long-term LVEF, reduced incidence of severe LV systolic dysfunction and ICD indications, and fewer heart failure admissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

nd-of-life care is not usually a priority in cardiology departments. We sought to evaluate the changes in end-of-life care after the introduction of a do-not-resuscitate (DNR) order protocol. Retrospective analysis of all deaths in a cardiology department in two periods, before and after the introduction of the protocol. Comparison of demographic characteristics, use of DNR orders, and end-of-life care issues between both periods, according to the presence in the second period of the new DNR sheet (Group A), a conventional DNR order (Group B) or the absence of any DNR order (Group C). The number of deaths was similar in both periods (n = 198 vs. n = 197). The rate of patients dying with a DNR order increased significantly (57.1% vs. 68.5%; P = 0.02). Only 4% of patients in both periods were aware of the decision taken about cardiopulmonary resuscitation. Patients in Group A received the DNR order one day earlier, and 24.5% received it within the first 24 h of admission (vs. 2.6% in the first period; P < 0.001). All patients in Group A with an implantable cardioverter defibrillator (ICD) had shock therapies deactivated (vs. 25.0% in the first period; P = 0.02). The introduction of a DNR order protocol may improve end-of-life care in cardiac patients by increasing the use and shortening the time of registration of DNR orders. It may also contribute to increase ICD deactivation in patients with these orders in place. However, the introduction of the sheet in late stages of the disease failed to improve patient participation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La terapia de resincronización cardiaca se asocia a mejora de la calidad de vida y reducción de la morbimortalidad de los pacientes con disfunción ventricular grave y QRS ancho. Sobre su papel en la reducción de arritmias ventriculares, hay más discusión. Se comparó la incidencia de arritmias ventriculares en pacientes portadores de desfibrilador automático implantable con función de resincronización cardiaca, según el grado de respuesta ecocardiográfica a la resincronización. Se clasificó a los pacientes en tres subgrupos: superrespondedores, respondedores y no respondedores. Se incluyó a 196 pacientes seguidos durante una mediana de 30,1 [intervalo intercuartílico, 18,0-55,1] meses. Se documentó presencia de arritmias ventriculares en 37 pacientes (18,8%); 3 pacientes (5,9%) del grupo de superrespondedores presentaron arritmias ventriculares, en comparación con 14 (22,2%) del grupo de respondedores y 20 (24,4%) del grupo de no respondedores (p = 0,025). En el análisis multivariable, el implante del dispositivo en prevención secundaria (odds ratio = 4,04; intervalo de confianza del 95%, 1,52-10,75; p = 0,005), la ausencia de superrespuesta ecocardiográfica (odds ratio = 3,81; intervalo de confianza del 95%, 1,04-13,93; p = 0,043), un QRS > 160 ms (odds ratio = 2,39; intervalo de confianza del 95%, 1,00-1,35; p = 0,049) y el tratamiento con amiodarona (odds ratio = 2,47; intervalo de confianza del 95%, 1,03-5,91; p = 0,041) fueron los únicos predictores independientes de aparición de arritmias ventriculares. Los pacientes superrespondedores a la terapia de resincronización cardiaca presentan una disminución significativa en la incidencia de arritmias ventriculares respecto a los demás pacientes. Pese a ello, los episodios arrítmicos no llegan a desaparecer por completo en este subgrupo.