961 resultados para CARBOXYL-TERMINAL FRAGMENT


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Opossum kidney OKP cells express an apical membrane Na+/H+ antiporter that is encoded by NHE-3 (for Na+/H+ exchanger 3) and is similar in many respects to the renal proximal tubule apical membrane Na+/H+ antiporter. Chronic incubation of OKP cells in acid medium for 24 hr increases Na+/H(+)-antiporter activity and NHE-3 mRNA abundance. The increase in Na+/H(+)-antiporter activity was not prevented by H7, a protein kinase C/protein kinase A inhibitor, but was prevented by herbimycin A, a tyrosine kinase inhibitor. Incubation of cells in acid medium increased c-src activity, and this was inhibited by herbimycin A. To determine the role of the src family of nonreceptor protein-tyrosine kinases, Csk (for carboxyl-terminal src kinase), a physiologic inhibitor of these kinases, was overexpressed in OKP cells. In three clones overexpressing csk, acid-induced increases in Na+/H(+)-antiporter activity and NHE-3 mRNA abundance were inhibited. In these clones, inhibition of acid activation of Na+/H(+)-antiporter activity paralleled inhibition of acid activation of c-src. Neither herbimycin A nor overexpression of csk inhibited dexamethasone-induced increases in Na+/H(+)-antiporter activity. These studies show that decreases in pH activate c-src and that the src family nonreceptor protein-tyrosine kinases play a key role in acid activation of NHE-3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To identify cellular factors that function in -1 ribosomal frameshifting, we have developed assays in the yeast Saccharomyces cerevisiae to screen for host mutants in which frameshifting is specifically affected. Expression vectors have been constructed in which the mouse mammary tumor virus gag-pro frameshift region is placed upstream of the lacZ gene or the CUP1 gene so that the reporters are in the -1 frame relative to the initiation codon. These vectors have been used to demonstrate that -1 frameshifting is recapitulated in yeast in response to retroviral mRNA signals. Using these reporters, we have isolated spontaneous host mutants in two complementation groups, ifs1 and ifs2, in which frameshifting is increased 2-fold. These mutants are also hypersensitive to antibiotics that target the 40S ribosomal subunit. We have cloned the IFS1 gene and shown that it encodes a previously undescribed protein of 1091 aa with clusters of acidic residues in the carboxyl-terminal region. Haploid cells lacking 82% of the IFS1 open reading frame are viable and phenotypically identical to ifs1-1 mutants. This approach could help identify potential targets for antiretroviral agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The p70 S6 kinase is activated by insulin and mitogens through multisite phosphorylation of the enzyme. One set of activating phosphorylations occurs in a putative autoinhibitory domain in the noncatalytic carboxyl-terminal tail. Deletion of this tail yields a variant (p70 delta CT104) that nevertheless continues to be mitogen regulated. Coexpression with a recombinant constitutively active phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) gives substantial activation of both full-length p70 and p70 delta CT104 but not Rsk. Activation of p70 delta CT104 by PI 3-kinase and inhibition by wortmannin are each accompanied by parallel and selective changes in the phosphorylation of p70 Thr-252. A Thr or Ser at this site, in subdomain VIII of the catalytic domain just amino-terminal to the APE motif, is necessary for p70 40S kinase activity. The inactive ATP-binding site mutant K123M p70 delta CT104 undergoes phosphorylation of Thr-252 in situ but does not undergo direct phosphorylation by the active PI 3-kinase in vitro. PI 3-kinase provides a signal necessary for the mitogen activation of the p70 S6 kinase, which directs the site-specific phosphorylation of Thr-252 in the p70 catalytic domain, through a distinctive signal transduction pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of an Aeromonas salmonicida A layer-deficient/O polysaccharide-deficient mutant carrying a Tn5 insertion in the structural gene for A protein (vapA) showed that the abcA gene immediately downstream of vapA had been interrupted by the endogenous insertion sequence element ISAS1. Immunoelectron microscopy showed that O polysaccharides did not accumulate at the inner membrane-cytoplasm interface of this mutant. abcA encodes an unusual protein; it carries both an amino-terminal ATP-binding cassette (ABC) domain showing high sequence similarity to ABC proteins implicated in the transport of certain capsular and O polysaccharides and a carboxyl-terminal potential DNA-binding domain, which distinguishes AbcA from other polysaccharide transport proteins in structural and evolutionary terms. The smooth lipopolysaccharide phenotype was restored by complementation with abcA but not by abcA carrying site-directed mutations in the sequence encoding the ATP-binding site of the protein. The genetic organization of the A. salmonicida ABC polysaccharide system differs from other bacteria. abcA also differs in apparently being required for both O-polysaccharide synthesis and in energizing the transport of O polysaccharides to the cell surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II has been suggested to be critical for transcription initiation, activation, or elongation. A kinase activity specific for CTD is a component of the general transcription factor TFIIH. Recently, a cyclin-dependent kinase-activator kinase (MO15 and cyclin H) was found to be associated with TFIIH preparations and was suggested to be the CTD kinase. TFIIH preparations containing mutant, kinase-deficient MO15 lack CTD kinase activity, indicating that MO15 is critical for polymerase phosphorylation. Nonetheless, these mutant TFIIH preparations were fully functional (in vitro) in both basal and activated transcription. These results indicate that CTD phosphorylation is not required for transcription with a highly purified system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The homeostasis of GABA is critical to normal brain function. Extracellular levels of GABA are regulated mainly by plasmalemmal gamma-aminobutyric acid (GABA) transporters. Whereas the expression of GABA transporters has been extensively studied in rodents, validation of this data in other species, including humans, has been limited. As this information is crucial for our understanding of therapeutic options in human diseases such as epilepsy, we have compared, by immunocytochemistry, the distributions of the GABA transporters GAT-1 and GAT-3 in rats, cats, monkeys and humans. We demonstrate subtle differences between the results reported in the literature and our results, such as the predominance of GAT-1 labelling in neurons rather than astrocytes in the rat cortex. We note that the optimal localisation of GAT-1 in cats, monkeys and humans requires the use of an antibody against the human sequence carboxyl terminal region of GAT-1 rather than against the slightly different rat sequence. We demonstrate that GAT-3 is localised mainly to astrocytes in hindbrain and midbrain regions of rat brains. However, in species such as cats, monkeys and humans, additional strong immunolabelling of oligodendrocytes has also been observed. We suggest that differences in GAT distribution, especially the expression of GAT-3 by oligodendrocytes in humans, must be accommodated in extrapolating rodent models of GABA homeostasis to humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Yeast is an important and versatile organism for studying membrane proteins. It is easy to cultivate and can perform higher eukaryote-like post-translational modifications. S. cerevisiae has a fully-sequenced genome and there are several collections of deletion strains available, whilst P. pastoris can produce very high cell densities (230 g/l). Results We have used both S. cerevisiae and P. pastoris to over-produce the following His6 and His10 carboxyl terminal fused membrane proteins. CD81 – 26 kDa tetraspanin protein (TAPA-1) that may play an important role in the regulation of lymphoma cell growth and may also act as the viral receptor for Hepatitis C-Virus. CD82 – 30 kDa tetraspanin protein that associates with CD4 or CD8 cells and delivers co-stimulatory signals for the TCR/CD3 pathway. MC4R – 37 kDa seven transmembrane G-protein coupled receptor, present on neurons in the hypothalamus region of the brain and predicted to have a role in the feast or fast signalling pathway. Adt2p – 34 kDa six transmembrane protein that catalyses the exchange of ADP and ATP across the yeast mitochondrial inner membrane. Conclusion We show that yeasts are flexible production organisms for a range of different membrane proteins. The yields are such that future structure-activity relationship studies can be initiated via reconstitution, crystallization for X-ray diffraction or NMR experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two colinear bacteriophage T7 gene 4 proteins provide helicase and primase functions in vivo. T7 primase differs from T7 helicase by an additional 63 residues at the amino terminus. This terminal domain contains a zinc-binding motif which mediates an interaction with the basic primase recognition sequence 3'-CTG-5'. We have generated a chimeric primase in which the 81 amino-terminal residues are derived from the primase of phage T3 and the 484 carboxyl-terminal residues are those of phage T7 helicase. The amino-terminal domain of T3 primase is 50% homologous with that of T7 primase. The resulting T3/T7 chimeric protein is a functional primase in vivo. While the primase activity of the purified protein is about one-third that of T7 primase, the recognition sites used and the oligoribonucleotides synthesized from these sites are identical. We conclude that the residues responsible for the interaction with the sequence 3'-CTG-5' are conserved between the chimeric and T7 proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study concerns the nature of nitric oxide synthase (NOS) and the role of nitric oxide (NO) in the rat gastrointestinal tract. The major objectives were (i) to characterise NOS isoforms in the gastric glandular mucosa, (ii) to localise NOS isoforms in the rat gastric glandular mucosa, (iii) to investigate the role of NO in carbachol-stimulated gastric mucus secretion, (iv) to investigate the nature of NOS and small intestine. Immunoblotting was performed using polyclonal antisera raised against two peptides found in the rat brain NOS sequence and commercial monoclonal antibodies directed against neuronal and endothelial isoforms of NOS. A160kDa band was detected in brain and gastric mucosal samples with antibodies and antisera directed against neuronal NOS sequences, and a 140kDa band was detected in gastric mucosal samples using an anti-endothelial NOS antibody. An intense 160kDa neuronal NOS band was detected in a high-density fraction of gastric mucosal cells separated on a Percoll gradient. Detection of neuronal NOS by a carboxyl-terminal antiserum in samples of brain, but not of gastric mucosa, could be blocked by the peptide (20g/ml) against which the antibody was raised. After affinity purification, recognition of gastric mucosal NOS was blocked by peptide. Particulate neuronal NOS was found in the brain by immunoblotting while 94% of gastric mucosal enzyme was soluble. Gastric mucosal endothelial NOS was 95% particulate. 95% of NOS activity in the gastric mucosa was due to neuronal NOS. Paraformaldehyde- and acetone-fixed gastric mucosal sections were subject to immunocytochemistry using the above antibodies. Neuronal NOS was localised to the surface mucosal epithelial cells while endothelial NOS was associated with microvessels at the base of the mucosa and to larger vessels in the submucosa. Intragastric administration of carbachol or 16, 16-dimethyl prostaglandin E2 increased the thickness of the rat gastric mucus layer. The NOS inhibitor NG-nitro-L-arginine methyl ester dose-dependently, and selectively, prevented the stimulatory effect of carbachol. Ca2+-independent NOS activity in rat ileal, jejunal and colonic muscle was increased after LPS induction. Ca2+-dependent activity was not affected. Distribution of inducible NOS protein paralleled Ca2+ -independent activity. LPS treatment did not affect the content of neuronal NOS in colonic muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction of Cs4[Re6Te8(CN)6]·2H2O with Cu(en)2Cl2 in water affords crystals of a cluster complex [{Cu(H2O)(en) 2}{Cu(en)2}Re6Te8(CN)6]·3H2O. The structure of the compound is determined by single crystal X-ray diffraction (a = 10.8082(4) Å, b = 16.5404(6) Å, c = 24.6480(7) Å, β = 92.696(1)°, V = 4401.5(3) Å3, Z = 4, space group P21/n, R 1 = 0.0331, wR 2 (all data) = 0.0652). In the complex, cluster [Re6Te8(CN)6]4- anions are linked by Cu2+ cations into zigzag chains through cyanide bridges. The coordination environment of the copper cations is complemented by ethylenediamine molecules. Each of the cluster anions is additionally coordinated by a terminal fragment {Cu(H2O)(en)2}. © 2014 Pleiades Publishing, Ltd.