946 resultados para CAD-CAM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinematic structure of planar mechanisms addresses the study of attributes determined exclusively by the joining pattern among the links forming a mechanism. The system group classification is central to the kinematic structure and consists of determining a sequence of kinematically and statically independent-simple chains which represent a modular basis for the kinematics and force analysis of the mechanism. This article presents a novel graph-based algorithm for structural analysis of planar mechanisms with closed-loop kinematic structure which determines a sequence of modules (Assur groups) representing the topology of the mechanism. The computational complexity analysis and proof of correctness of the implemented algorithm are provided. A case study is presented to illustrate the results of the devised method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance -- They allow to save time and to avoid errors during part programming and permit code re-usage -- Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility -- In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while) -- Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability -- Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs -- Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EU]"Arku fazial birtualaren balidazioa eta optimizazioa". Odontologian eta, oro har, medikuntzan, prozesu birtualek geroz eta indar handiagoa hartzen dabiltza, bai espezialista baita pazienteei erraztasuna emateko asmoz. Ildo horretatik jarraituz, protesien eta hortz-errestaurazioen kasuan, ikerketa sakonak burutu dira, prozesuaren ahalik eta zatirik handiena digitalizatzeko. Digitalizazio prozesu honetan CAD/CAM sistemaren aurrerapenek ere zeresan handia izan dute; izan ere, protesi eta errestaurazioen prozesu tradizionala ordezkatzea ahalbidetu du. Prozesu digitalek hainbat onura suposatu arren, zein fidagarriak diren konprobatzea ezinbestekoa da, prozesuarentzat metodologiarik egokiena aukeratu ahal izateko. Horretan zentratzen da hain zuzen proiektu hau. Protesien diseinu birtuala egin ahal izateko, beharrezkoa da horzduren kokapen birtuala lortzea, artikulagailu birtualean kokatu ahal izateko. Horretarako arku fazial birtuala erabiliko da, baina oraindik ez da metodologiarik egokiena zein den konprobatu. Beraz, proiektu honen helburua arku fazial birtual egokiena zein den zehaztea da, horretarako metodologia ezberdinak konparatuko direlarik bai modelo ez-erreala erabiliz (in vitro) baita paziente errealekin (in vivo). Horrela, prozesu ezberdinen zehaztasuna zein den konprobatu ahal izango da, bakoitzaren egiazkotasuna eta doitasuna aztertuz. Emaitzetan oinarrituz, arku fazial birtual gisa metodologiarik egokiena zein den ondorioztatu ahal izango da.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increasing concern to reduce the cost and overheads during the development of reliable systems. Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened). This paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications running in different microprocessors. Results show a significant improvement in accuracy compared to previous approaches and regardless of the underlying architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los protocolos de medición antropométrica se caracterizan por la profusión de medidas discretas o localizadas, en un intento para caracterizar completamente la forma corporal del sujeto -- Dichos protocolos se utilizan intensivamente en campos como medicina deportiva, forense y/o reconstructiva, diseño de prótesis, ergonomía, en la confección de prendas, accesorios, etc -- Con el avance de algoritmos de recuperación de formas a partir de muestreos (digitalizaciones) la caracterización antropométrica se ha alterado significativamente -- El articulo presente muestra el proceso de caracterización digital de forma corpórea, incluyendo los protocolos de medición sobre el sujeto, el ambiente computacional - DigitLAB- (desarrollado en el CII-CAD-CAM-CG de la Universidad EAFIT) para recuperación de superficies, hasta los modelos geométricos finales -- Se presentan comparaciones de los resultados obtenidos con DigitLAB y con paquetes comerciales de recuperación de forma 3D -- Los resultados de DigitLAB resultan superiores, debido principalmente al hecho de que este toma ventaja de los patrones de las digitalizaciones (planares de contacto, por rejilla de pixels - range images -, etc.) y provee módulos de tratamiento geométrico - estadístico de los datos para poder aplicar efectivamente los algoritmos de recuperación de forma -- Se presenta un caso de estudio dirigido a la industria de la confección, y otros efectuados sobre conjuntos de prueba comunes en el ámbito científico para la homologación de algoritmos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el área de Aerofotogrametría Digital, el software comercial prevalente para postproceso presenta limitaciones debido a dos factores: (i) las legislaciones de cada país o región requieren diferentes convenciones, y (ii) las necesidades de las empresas son tan cambiantes que no justifican la compra de software de alto rendimiento, que puede quedar sin utilizar debido a un viraje del mercado -- El presente proyecto se ha desarrollado para atender necesidades de procesamiento automático de planos (partición, detección y corrección de errores, etc.), así como módulos de importación – exportación paquete a paquete, trazado de rutas e interacción con GPS -- Este artículo informa de los dos últimos aspectos -- Debido a necesidades de los clientes, los archivos entregados deben llevar un formato comercial (DWG, DXF), pero el procesamiento de los archivos debe ser hecho en paquetes y formatos diversos (DGN) -- Por lo tanto, fue necesario diseñar e implementar un formato acompañante que permitió llevar la información que se pierde al usar filtros comerciales (DGN a DXF/DWG) -- Asimismo se crearon módulos de importación y exportación redundantes, que hicieron efectivos dichos atributos -- En el aspecto de generación de rutas de vuelo, se reportan en este artículo la aplicación de algoritmos tradicionales de barrido (peinado) de áreas 2D, a los cuales se agregaron restricciones geométricas (puntos fijos, offsets, orden de los barridos de acuerdo a coordenadas del sitio de partida, etc.) -- Debido a los altos costos de equipos equivalentes, se decidió desarrollar software para traducción de rutas entre formatos GPS y formatos geográficos locales al país -- Ello permite la eliminación de fuentes de error y además facilita la carga del plan de vuelo, a costos mucho menores a los del hardware / software comercial

Relevância:

30.00% 30.00%

Publicador: