969 resultados para C-elegans
Resumo:
In a genome-wide RNA-mediated interference screen for genes required in membrane traffic - including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion - we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.
Resumo:
Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.
Resumo:
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
Resumo:
The tethering factor p115 has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that RNAi-mediated depletion of p115 in C. elegans causes accumulation of the yolk protein (YP170) in body cavity and the retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes.Structure-function analyses of p115 have identified two homology (H1-2) regions within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a novel C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants lacking the fourth CC domain (CC4) act in a dominant negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi-mediated "replacement" strategy we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115.p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function and suggest that both the CC1 and the CC4 SNARE-binding motifs may participate in p115-mediated membrane tethering.
Resumo:
While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease.
Resumo:
Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.
Resumo:
FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology.
Resumo:
La Sclérose Latérale Amyotrophique (SLA) est une maladie neurodégénérative qui affecte les neurones moteurs. 10% des cas sont des cas familiaux et l’étude de ces familles a mené à la découverte de plusieurs gènes pouvant causer la SLA, incluant SOD1, TARDBP et FUS. L’expansion de la répétition GGGGCC dans le gène C9orf72 est, à ce jour, la cause la plus connue de SLA. L’impact de cette expansion est encore méconnu et il reste à déterminer si la toxicité est causée par un gain de fonction, une perte de fonction ou les deux. Plusieurs gènes impliqués dans la SLA sont conservés entre le nématode Caenorhabditis elegans et l’humain. C. elegans est un vers transparent fréquemment utilisé pour des études anatomiques, comportementales et génétiques. Il possède une lignée cellulaire invariable qui inclue 302 neurones. Aussi, les mécanismes de réponse au stress ainsi que les mécanismes de vieillissement sont très bien conservés entre ce nématode et l’humain. Donc, notre groupe, et plusieurs autres, ont utilisé C. elegans pour étudier plusieurs aspects de la SLA. Pour mieux comprendre la toxicité causée par l’expansion GGGGCC de C9orf72, nous avons développé deux modèles de vers pour étudier l’impact d’une perte de fonction ainsi que d’un gain de toxicité de l’ARN. Pour voir les conséquences d’une perte de fonction, nous avons étudié l’orthologue de C9orf72 dans C. elegans, alfa-1 (ALS/FTD associated gene homolog). Les vers mutants alfa-1(ok3062) développent des problèmes moteurs causant une paralysie et une dégénérescence spécifique des neurones moteurs GABAergiques. De plus, les mutants sont sensibles au stress osmotique qui provoque une dégénérescence. D’autre part, l’expression de la séquence d’ARN contenant une répétition pathogénique GGGGCC cause aussi des problèmes moteurs et de la dégénérescence affectant les neurones moteurs. Nos résultats suggèrent donc qu’un gain de toxicité de l’ARN ainsi qu’une perte de fonction de C9orf72 sont donc toxiques pour les neurones. Puisque le mouvement du vers peut être rapidement évalué en cultivant les vers dans un milieu liquide, nous avons développé un criblage de molécules pouvant affecter le mouvement des vers mutants alfa-1 en culture liquide. Plus de 4 000 composés ont été évalués et 80 ameliore la mobilité des vers alfa-1. Onze molécules ont aussi été testées dans les vers exprimant l’expansion GGGGCC et huit diminuent aussi le phénotype moteur de ces vers. Finalement, des huit molécules qui diminent la toxicité causée par la perte de fonction de C9orf72 et la toxicité de l’ARN, deux restaurent aussi l’expression anormale de plusieurs transcrits d’ARN observée dans des cellules dérivées de patient C9orf72. Avec ce projet, nous voulons identifier des molécules pouvant affecter tous les modes de toxicité de C9orf72 et possiblement ouvrir de nouvelles avenues thérapeutiques
Phylum-wide transcriptome analysis of oogenesis and early embryogenesis in selected nematode species
Resumo:
Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.
Resumo:
La Sclérose Latérale Amyotrophique (SLA) est une maladie neurodégénérative qui affecte les neurones moteurs. 10% des cas sont des cas familiaux et l’étude de ces familles a mené à la découverte de plusieurs gènes pouvant causer la SLA, incluant SOD1, TARDBP et FUS. L’expansion de la répétition GGGGCC dans le gène C9orf72 est, à ce jour, la cause la plus connue de SLA. L’impact de cette expansion est encore méconnu et il reste à déterminer si la toxicité est causée par un gain de fonction, une perte de fonction ou les deux. Plusieurs gènes impliqués dans la SLA sont conservés entre le nématode Caenorhabditis elegans et l’humain. C. elegans est un vers transparent fréquemment utilisé pour des études anatomiques, comportementales et génétiques. Il possède une lignée cellulaire invariable qui inclue 302 neurones. Aussi, les mécanismes de réponse au stress ainsi que les mécanismes de vieillissement sont très bien conservés entre ce nématode et l’humain. Donc, notre groupe, et plusieurs autres, ont utilisé C. elegans pour étudier plusieurs aspects de la SLA. Pour mieux comprendre la toxicité causée par l’expansion GGGGCC de C9orf72, nous avons développé deux modèles de vers pour étudier l’impact d’une perte de fonction ainsi que d’un gain de toxicité de l’ARN. Pour voir les conséquences d’une perte de fonction, nous avons étudié l’orthologue de C9orf72 dans C. elegans, alfa-1 (ALS/FTD associated gene homolog). Les vers mutants alfa-1(ok3062) développent des problèmes moteurs causant une paralysie et une dégénérescence spécifique des neurones moteurs GABAergiques. De plus, les mutants sont sensibles au stress osmotique qui provoque une dégénérescence. D’autre part, l’expression de la séquence d’ARN contenant une répétition pathogénique GGGGCC cause aussi des problèmes moteurs et de la dégénérescence affectant les neurones moteurs. Nos résultats suggèrent donc qu’un gain de toxicité de l’ARN ainsi qu’une perte de fonction de C9orf72 sont donc toxiques pour les neurones. Puisque le mouvement du vers peut être rapidement évalué en cultivant les vers dans un milieu liquide, nous avons développé un criblage de molécules pouvant affecter le mouvement des vers mutants alfa-1 en culture liquide. Plus de 4 000 composés ont été évalués et 80 ameliore la mobilité des vers alfa-1. Onze molécules ont aussi été testées dans les vers exprimant l’expansion GGGGCC et huit diminuent aussi le phénotype moteur de ces vers. Finalement, des huit molécules qui diminent la toxicité causée par la perte de fonction de C9orf72 et la toxicité de l’ARN, deux restaurent aussi l’expression anormale de plusieurs transcrits d’ARN observée dans des cellules dérivées de patient C9orf72. Avec ce projet, nous voulons identifier des molécules pouvant affecter tous les modes de toxicité de C9orf72 et possiblement ouvrir de nouvelles avenues thérapeutiques
Resumo:
Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.
Resumo:
Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.
Resumo:
CCBE S. XVI, B, 570
Resumo:
Prefatory dedication signed: Io. Baptista Bertazolus.