978 resultados para C-13 Nmr Calculations
Resumo:
We apply a new X-ray scattering approach to the study of melt-spun filaments of tri-block and random terpolymers prepared from lactide, caprolactone and glycolide. Both terpolymers contain random sequences, in both cases the overall fraction of lactide units is similar to 0.7 and C-13 and H-1 NMR shows the lactide sequence length to be similar to 9-10. A novel representation of the X-ray fibre pattern as series of spherical harmonic functions considerably facilitates the comparison of the scattering from the minority crystalline phase with hot drawn fibres prepared from the poly(L-lactide) homopolymer. Although the fibres exhibit rather disordered structures we show that the crystal structure is equivalent to that displayed by poly(L-lactide) for both the block and random terpolymers. There are variations in the development of a two-phase structure which reflect the differences in the chain architectures. There is evidence that the random terpolymer includes non-lactide units in to the crystal interfaces to achieve a well defined two-phase structure. (c) 2005 Published by Elsevier Ltd.
Resumo:
Variation calculations of the vibration–rotation energy levels of many isotopomers of HCN are reported, for J=0, 1, and 2, extending up to approximately 8 quanta of each of the stretching vibrations and 14 quanta of the bending mode. The force field, which is represented as a polynomial expansion in Morse coordinates for the bond stretches and even powers of the angle bend, has been refined by least squares to fit simultaneously all observed data on the Σ and Π state vibrational energies, and the Σ state rotational constants, for both HCN and DCN. The observed vibrational energies are fitted to roughly ±0.5 cm−1, and the rotational constants to roughly ±0.0001 cm−1. The force field has been used to predict the vibration rotation spectra of many isotopomers of HCN up to 25 000 cm−1. The results are consistent with the axis‐switching assignments of some weak overtone bands reported recently by Jonas, Yang, and Wodtke, and they also fit and provide the assignment for recent observations by Romanini and Lehmann of very weak absorption bands above 20 000 cm−1.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
[15-(CH3)-C-13-H-2]-dihydroartemisinic acid (2a) and [15-(CH3)-H-2]-dihydroartemisinic acid (2b) have been fed via the root to intact Artemisia annua plants and their transformations studied in vivo by one-dimensional H-2 NMR spectroscopy and two-dimensional, C-13-H-2 correlation NMR spectroscopy (C-13-(2) H COSY). Labelled dihydroartemisinic acid was transformed into 16 12-carboxy-amorphane and cadinane sesquiterpenes within a few days in the aerial parts of A. annua, although transformations in the root were much slower and more limited. Fifteen of these 16 metabolites have been reported previously as natural products from A. annua. Evidence is presented that the first step in the transformation of dihydroartemisinic acid in vivo is the formation of allylic hydroperoxides by the reaction of molecular oxygen with the Delta(4,5)-double bond in this compound. The origin of all 16 secondary metabolites might then be explained by the known further reactions of such hydroperoxides. The qualitative pattern for the transformations of dihydroartemisinic acid in vivo was essentially unaltered when a comparison was made between plants, which had been kept alive and plants which were allowed to die after feeding of the labelled precursor. This, coupled with the observation that the pattern of transformations of 2 in vivo demonstrated very close parallels with the spontaneous autoxidation chemistry for 2, which we have recently demonstrated in vitro, has lead us to conclude that the main 'metabolic route' for dihydroartemisinic acid in A. annua involves its spontaneous autoxidation and the subsequent spontaneous reactions of allylic hydroperoxides which are derived from 2. There may be no need to invoke the participation of enzymes in any of the later biogenetic steps leading to all 16 of the labelled 11,13-dihydro-amorphane sesquiterpenes which are found in A. annua as natural products. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Trans-1, [HNEt3][Co-III(L-Se)(2)]center dot H2O and cis-1, [HNEt3][Co-III(L-Se)(2)]center dot 3H(2)O have been synthesized and characterized by single-crystal X-ray studies. The counter ion Et3NH+ plays a crucial role in the crystal packing leading to the formation of two distinctly different supramolecular assemblies in the two complexes. In trans-1, Co-bisphenolate units and triethylamine molecules are arranged in a linear fashion leading to a supramolecular columnar assembly along the crystallographic a-axis. In this assembly, triethylammonium ions are sandwiched between successive Co-bisphenolate units and act as gluing agents joining Co-bisphenolate units on either side through C-H center dot center dot center dot pi interactions. In sharp contrast to trans-1, Co-bisphenolate units and triethylammonium ions in cis-1 are arranged in a helical supramolecular assembly through similar C-H center dot center dot center dot pi interactions along the crystallographic b-axis. The Se center dot center dot center dot Se van der Waals interactions may be responsible for the predominant occurrence of the cis-isomer. The cyclic voltammetric studies showed quasi-reversible waves for the cobalt(III) -> cobalt(II) reductions with E-1/2 = 0.635 and 0.628 V vs. Ag/AgCl for cis-1 (at similar to 5 degrees C) and trans-1 (at similar to 25 degrees C), respectively. DFT calculations show that the trans-form is the thermodynamic product with higher stability than the cis-one, which is consistent with the variable temperature H-1 NMR studies
Resumo:
New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.
Resumo:
Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.
Resumo:
Fixation of CO(2) is one of the most important priorities of the scientific community dedicated to reduce global warming. In this work, we propose new methods for the fixation of CO2 using the guanidine bases tetramethylguanidine (TMG) and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]-pyrimidine (TBD). In order to understand the reactions occurring during the CO(2) fixation and release processes, we employed several experimental methods, including solution and solid-state NMR, FTIR, and coupled TGA-FTIR. Quantum mechanical NMR calculations were also carried out. Based on the results obtained, we concluded that CO(2) fixation with both TMG and TBD guanidines is a kinetically reversible process, and the corresponding fixation products have proved to be useful as transcarboxylating compounds. Afterward, CO(2) thermal releasing from this fixation product with TBD was found to be an interesting process for CO(2) capture and isolation purposes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Resol type resins were prepared in alkaline conditions (potassium hydroxide or potassium carbonate) using furfural obtained by acid hydrolysis of abundant renewable resources from agricultural and forestry waste residues. The structures of the resins were fully determined by H-1, C-13, and 2D NMR spectrometries with the help of four models compounds synthesized specially for this study. MALDI-Tof mass spectrometry experiments indicated that a majority of linear oligomers and a minority of cyclic ones constituted them. Composites were prepared with furfural-phenol resins and sisal fibers. These fibers were chosen mainly because they came from natural lignocellulosic material and they presented excellent mechanical microscopy images indicated that the composites displayed excellent adhesion between resin and fibers. Impact strength measurement showed that mild conditions were more suitable to prepare thermosets. Nevertheless, mild conditions induced a high-diffusion coefficient for water absorption by composites. Composites with good properties could be prepared using high proportion of materials obtained from biomass without formaldehyde. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fixation of CO2 is one of the most important priorities of the scientific community dedicated to reduce global warming. In this work, we propose new methods for the fixation of CO2 using the guanidine bases tetramethylguanidine (TMG) and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]-pyrimidine (TBD). In order to understand the reactions occurring during the CO2 fixation and release processes, we employed several experimental methods, including solution and solid-state NMR, FTIR, and coupled TGA-FTIR. Quantum mechanical NMR calculations were also carried out. Based on the results obtained, we concluded that CO2 fixation with both TMG and TBD guanidines is a kinetically reversible process, and the corresponding fixation products have proved to be useful as transcarboxylating compounds. Afterward, CO2 thermal releasing from this fixation product with TBD was found to be an interesting process for CO2 capture and isolation purposes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, synthesis, characterization and antimycobacterial properties of a new water-soluble complex identified as silver-mandelate are described. Elemental and thermal analyses are consistent with the formula [Ag(C6H5C(OH)COO)](n). The polymeric structure was determined by single X-ray diffraction and the two-dimensional structure is based on the bis(carboxylate-O,O') dimer [Ag-O, 2.237(3), 2.222(3) angstrom]. The structure is extended along both the b and c axes through two oxygen atoms of a bidentate alpha-hydroxyl-carboxylate residue [Ag-OH(hydroxyl), 2.477(3) angstrom; Ag-O(carboxylate), 2.502(3) angstrom; O-Ag-O, 63.94(9)degrees]. A strong d(10)-d(10) interaction was observed between two silver atoms. The Ag...Ag distance is 2.8307(15) angstrom. The NMR C-13 spectrum in D2O shows that coordination of the ligand to Ag(l) occurs through the carboxylate group in solution. Potentiometric titration shows that only species with a molar metaHigand ratio of 2:2 are formed in aqueous solution. The mandelate complex and the silver-glycolate, silver-malate and silver-hydrogen-tartarate complexes were tested against three types of mycobacteria, Mycobacterium avium, Mycobacterium tuberculosis and Mycobacterium kansasii, and their minimal inhibitory concentration (MIC) values were determined. The results show that the four complexes are potential candidates for antiseptic or disinfectant drugs for discharged secretions of patients affected with tuberculosis. (c) 2006 Published by Elsevier B.V.
Resumo:
High amylose was cross-linked with sodium trimetaphosphate (STMP) using 2% and 4% solutions of NaOH at room temperature with reaction contact times of 0.5, 1, 2 and 4 h. The different polymers obtained were analyzed by FT IR, C-13 and P-31 solid state NMR, SEM and C, H and P elemental analysis. The results were used to propose a two-stage mechanism for phosphate incorporation, the first being kinetically controlled. (C) 2008 Elsevier Ltd. All rights reserved.