829 resultados para Business Process Mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O gerenciamento dos processos organizacionais vem sendo estudado pela ciência administrativa como forma de romper com o paradigma da estrutura organizacional funcional através da Gestão por Processos. O Business Process Management ( BPM alinhado às estratégias organizacionais e suportado cada vez mais pela Tecnologia da Informação (TI), proporciona clareza nas diversas pontas do processo colaborando para sua melhoria contínua com o objetivo de gerar valor agregado ao cliente. As organizações de saúde estão entre as empresas prestadoras de serviço pouco estudadas em relação ao gerenciamento por processos. Assim, este estudo analisou por meio de um estudo empírico de natureza qualitativa, como estão sendo conduzidos os processos organizacionais hospitalares à luz das melhores práticas em BPM. A pesquisa foi realizada através do estudo de casos múltiplos realizados em duas organizações hospitalares na cidade de Natal/RN. A literatura de referência apresentou diversos fatores para um desempenho otimizado em BPM, tratados nesta pesquisa como as melhores práticas em BPM. A partir da revisão da literatura foi elaborada uma síntese das melhores práticas de BPM que serviu de base para elaboração do modelo da pesquisa utilizado para coleta e análise dos dados. Este modelo indicou onze categorias que foram utilizadas para elaboração do roteiro de estrevistas semi-estruturadas, através da técnica de análise de conteúdo, com categorização de grade fechada. As categorias foram agrupadas em duas dimensões: Elementos relacionados à gestão ( governança ; liderança , alinhamento estratégico , cultura e conhecimento ) e elementos relacionados aos processos ( desenho , responsável , executores , tecnologia da informação e indicadores ), e ainda foi identificada uma terceira categoria: escritório de processos . Para seleção dos sujeitos desta pesquisa foi adotada a estratégia em cadeia ou bola de neve . Foi possível identificar que todas as categorias apontadas no modelo de pesquisa emergem entre os fatores buscados pelas organizações hospitalares para o gerenciamento por processos com destaque para categorias: cultura ; conhecimento ; desenho ; tecnologia da informação e indicadores . Em complemento às categorias de análise, foram identificadas dificuldades relacionadas à comunicação e integração dos diversos elos do processo. Além disso, constatou-se que nos hospitais investigados há um desvio do conceito de BPM no que diz respeito a seu objetivo final: agregar valor ao cliente. A pesquisa concluiu que o gerenciamento por processos nas organizações hospitalares investigadas encontra-se em fase inicial ou em desenvolvimento, sendo necessário superar as barreiras da comunicação e edificar uma cultura organizacional orientada às necessidades dos clientes para aplicação das melhores práticas de BPM, desta forma pesquisas futuras sobre este tema em outras organizações hospitalares, podem facilitar um estudo comparativo e ampliar o conhecimento no assunto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 12: Collaboration Platforms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bogotá (Colombia): Universidad de La Salle. Facultad de Ciencias Administrativas y Contables. Programa de Administración de Empresas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of actively managing and analyzing business processes is acknowledged more than ever in organizations nowadays. Business processes form an essential part of an organization and their ap-plication areas are manifold. Most organizations keep records of various activities that have been carried out for auditing purposes, but they are rarely used for analysis purposes. This paper describes the design and implementation of a process analysis tool that replays, analyzes and visualizes a variety of performance metrics using a process definition and its execution logs. Performing performance analysis on existing and planned process models offers a great way for organizations to detect bottlenecks within their processes and allow them to make more effective process improvement decisions. Our technique is applied to processes modeled in the YAWL language. Execution logs of process instances are compared against the corresponding YAWL process model and replayed in a robust manner, taking into account any noise in the logs. Finally, performance characteristics, obtained from replaying the log in the model, are projected onto the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of process mining, the use of event logs for the purpose of root cause analysis is increasingly studied. In such an analysis, the availability of attributes/features that may explain the root cause of some phenomena is crucial. Currently, the process of obtaining these attributes from raw event logs is performed more or less on a case-by-case basis: there is still a lack of generalized systematic approach that captures this process. This paper proposes a systematic approach to enrich and transform event logs in order to obtain the required attributes for root cause analysis using classical data mining techniques, the classification techniques. This approach is formalized and its applicability has been validated using both self-generated and publicly-available logs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisations are constantly seeking efficiency improvements for their business processes in terms of time and cost. Management accounting enables reporting of detailed cost of operations for decision making purpose, although significant effort is required to gather accurate operational data. Business process management is concerned with systematically documenting, managing, automating, and optimising processes. Process mining gives valuable insight into processes through analysis of events recorded by an IT system in the form of an event log with the focus on efficient utilisation of time and resources, although its primary focus is not on cost implications. In this paper, we propose a framework to support management accounting decisions on cost control by automatically incorporating cost data with historical data from event logs for monitoring, predicting and reporting process-related costs. We also illustrate how accurate, relevant and timely management accounting style cost reports can be produced on demand by extending open-source process mining framework ProM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having a reliable understanding about the behaviours, problems, and performance of existing processes is important in enabling a targeted process improvement initiative. Recently, there has been an increase in the application of innovative process mining techniques to facilitate evidence-based understanding about organizations' business processes. Nevertheless, the application of these techniques in the domain of finance in Australia is, at best, scarce. This paper details a 6-month case study on the application of process mining in one of the largest insurance companies in Australia. In particular, the challenges encountered, the lessons learned, and the results obtained from this case study are detailed. Through this case study, we not only validated existing `lessons learned' from other similar case studies, but also added new insights that can be beneficial to other practitioners in applying process mining in their respective fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today’s information systems log vast amounts of data. These collections of data (implicitly) describe events (e.g. placing an order or taking a blood test) and, hence, provide information on the actual execution of business processes. The analysis of such data provides an excellent starting point for business process improvement. This is the realm of process mining, an area which has provided a repertoire of many analysis techniques. Despite the impressive capabilities of existing process mining algorithms, dealing with the abundance of data recorded by contemporary systems and devices remains a challenge. Of particular importance is the capability to guide the meaningful interpretation of “oceans of data” by process analysts. To this end, insights from the field of visual analytics can be leveraged. This article proposes an approach where process states are reconstructed from event logs and visualised in succession, leading to an animated history of a process. This approach is customisable in how a process state, partially defined through a collection of activity instances, is visualised: one can select a map and specify a projection of events on this map based on the properties of the events. This paper describes a comprehensive implementation of the proposal. It was realised using the open-source process mining framework ProM. Moreover, this paper also reports on an evaluation of the approach conducted with Suncorp, one of Australia’s largest insurance companies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business process models have traditionally been an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach for process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions as they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. Empirical data obtained in this study suggests that this approach may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization approaches. This paper analyses process comparison from a design perspective, providing some practical visualization techniques as anal- ysis solutions (/to support process analysis). The design of the visual comparison has been tackled through three different points of view: the general model, the projected model and the side-by-side comparison in order to support the needs of business analysts. A case study is presented showing the application of process mining and visualization techniques to patient treatment across two Australian hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing techniques for automated discovery of process models from event logs gen- erally produce flat process models. Thus, they fail to exploit the notion of subprocess as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of hierarchical BPMN models con- taining interrupting and non-interrupting boundary events and activity markers. The technique employs functional and inclusion dependency discovery techniques in order to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the projected logs associated to each node in the hierarchy, parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. By employing approximate dependency discovery tech- niques, it is possible to filter out noise in the event log arising for example from data entry errors or missing events. A validation with one synthetic and two real-life logs shows that process models derived by the proposed technique are more accurate and less complex than those derived with flat process discovery techniques. Meanwhile, a validation on a family of synthetically generated logs shows that the technique is resilient to varying levels of noise.