990 resultados para Bulk system
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
We measure directed flow (v(1)) for charged particles in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p(t)), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v(1) in different collision systems, and investigate possible explanations for the observed sign change in v(1)(p(t)).
Resumo:
Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
Background The Family Health Strategy (FHS) has been implemented as a strategy for primary care improvement in Brazil. Working with teams that include one doctor, one nurse, auxiliary nurses and community health workers in predefined areas, the FHS began in 1994 (known then as the Family Health Program) and has since grown considerably. The programme has only recently undergone assessment of outcomes, in contrast to more routine evaluations of infrastructure and process. Methods In 2001, a health survey was carried out in two administrative districts (with 190 000 inhabitants) on the outskirts of the city of Sao Paulo, both partially served by the FHS. Chronic morbidity (hypertension, diabetes and ischaemic heart disease) of individuals aged 15 or older was studied in areas covered and not covered by the programme. Stratified univariate analysis was applied for sex, age, education, income, working status and social insurance of these populations. Multivariate analysis was applied where applicable. Results There was a distinct pattern in the morbidity profile of these populations, suggesting differentiated self-knowledge on chronic disease status in the areas served by the FHS. Conclusion The FHS can increase population awareness of chronic diseases, possibly through increasing access to primary care.
Resumo:
Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.
Resumo:
Background: Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of N omega-nitro-L-arginine methyl ester (L-NAME, 40 mu g), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. Results: Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. Discussion and conclusion: Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.
Resumo:
The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, mu m) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness.
Resumo:
Objective: The aim of the present study was to compare the in vitro effects of the Er:YAG laser, an ultrasonic system, and manual curette on dentine root surface by roughness and micro-morphological analysis. Materials and Methods: Thirty-six flattened bovine roots were randomly assigned to one of the following groups: group 1 (n = 12): Er: YAG laser ( 2940 nm), 120 mJ/pulse, 10 Hz, 8.4 J/cm(2); group 2 ( n = 12): ultrasonic system; and group 3 ( n = 12): manual curette. The mean surface roughness (Ra) of each sample was measured using a profilometer before and after the treatments. The micro-morphology of the treated and untreated ( control) root surfaces was evaluated with scanning electron microscopy (SEM) at 50 x and 1000 x magnification. Results: Analysis with the profilometer showed that for equal times of instrumentation, the smoothest surfaces were produced by the Er: YAG laser and the ultrasonic system, followed by the curette ( p < 0.05). Morphological analyses demonstrated that treatment with the Er: YAG laser produced some areas with an irregular surface, craters, and ablation of the intertubular dentin. The smear layer was removed and dentine tubules were opened by both curettes and the ultrasonic system. The micro-morphology of the dentine root surface after ultrasonic treatment, however, demonstrated randomly distributed areas cratering. Conclusion: All instruments increased the roughness of the dentine root surface after treatment; however, the curette produced rougher surfaces than the other devices. SEM analysis revealed distinct root surface profiles produced by the three devices.
Resumo:
Background: Cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self-renewing cell populations that constitute the bulk of tumor. Stem cells renewal and differentiation can be directly influenced by the oxygen levels of determined tissues, probably by the reduction of oxidative DNA damage in hypoxic regions, thus leading to a friendlier microenvironment, regarding to clonal expansion and for resistance to chemotherapeutic regimens. Furthermore, there have been strong data indicating a pivotal role of hypoxic niche in cancer stem cells development. There are evidence that hypoxia could drive the maintenance of CSC, via HIF-1 alpha expression, but it still to be determined whether hypoxia markers are expressed in breast tumors presenting CD44(+)CD24(-/low) immunophenotype. Methods: Immunohistochemical analysis of CD44(+)CD24(-/low) expression and its relationship with hypoxia markers and clinical outcome were evaluated in 253 samples of breast ductal carcinomas. Double-immunolabeling was performed using EnVision Doublestain System (Dako, Carpinteria, CA, USA). Slides were then scanned into high-resolution images using Aperio ScanScope XT and then, visualized in the software Image Scope (Aperio, Vista, CA, USA). Results: In univariate analysis, CD44(+)CD24(-/low) expression showed association with death due to breast cancer (p = 0.035). Breast tumors expressing CD44(+)CD24(-/low) immunophenotype showed relationship with HIF-1 alpha (p = 0.039) and negativity for HER-2 (p = 0.013). Conclusion: Considering that there are strong evidences that the fraction of a tumour considered to be cancer stem cells is plastic depending upon microenvironmental signals, our findings provide further evidence that hypoxia might be related to the worse prognosis found in CD44(+)CD24(-/low) positive breast tumors.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
It is possible that a system composed of up, down, and strange quarks exists as the true ground state of nuclear matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked state. Here we present calculations made on the basis of the MIT bag model, considering the influence of finite temperature on the allowed parameters characterizing the system for stability of bulk SQM (the so-called stability windows) and also for strangelets, small lumps of SQM, both in the color-flavor locking scenario. We compare these results with the unpaired SQM and also briefly discuss some astrophysical implications of them. Also, the issue of the strangelet's electric charge is discussed. The effects of dynamical screening, though important for nonpaired SQM strangelets, are not relevant when considering pairing among all three flavors and colors of quarks.
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.