977 resultados para Bulk Amorphous Alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended as high impedance films for the acoustic isolation of bulk acoustic wave devices operating in the GHz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed DC powers and substrate bias. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is obtained after estimating the mass density by X-ray reflectometry measurements and the longitudinal acoustic velocity by analyzing the longitudinal λ/2 resonance induced in a tantalum oxide film inserted between an acoustic reflector and an AlN-based resonator. A second measurement of the sound velocity is achieved through picosecond acoustic spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particles of red brown to yellow brown semiopaque oxides (RSO) dominate the insoluble residue fraction of the sediments at Site 597. Unlike the X-ray amorphous particles in the Bauer Deep sediments, these particles are composed of mainly goethite; the amount of X-ray amorphous ferric hydroxide and poorly crystalline ferromanganese oxyhydroxides is generally small relative to the amount of goethite. A qualitative goethite crystallinity index was established. The variations observed in the crystallinity of goethite with increasing depth and changes in lithology suggest that aging and long-term exposure to seawater in a high water/sediment regime influence and increase the rate of recrystallization of the Fe-oxyhydroxides of the RSO particles. The percentage of organic carbon is low in these sediments; it varies primarily between 0.2 and 0.4 wt.%. Phillipsite is present throughout the sediment column and is more concentrated in the youngest clay layer and in the oldest basal sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behavior and crystallization kinetics Of (CU60Zr30Ti10)(99)Sn-1 bulk metallic glass was studied by X-ray diffractometry and differential scanning calorimetry. It was found that a two-stage crystallization took place during continuous heating of the bulk metallic glass. Both the glass transition temperature T-g and the crystallization peak temperatures T-p displayed a strong dependence on the heating rate. The activation energy was determined by the Kissinger analysis method. In the first-stage of the crystallization, the transformation of the bulk metallic glass to the phase one occurred with an activation energy of 386 kJ/mol; in the second-stage, the formation of the phase two took place at an activation energy of 381 kJ/mol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu-based bulk metallic glass matrix composites (BMGMCs) containing in-situ TiC particles were fabricated successfully. The yield and fracture strength increased from 1930 MPa, 2250 MPa to 2210 MPa, 2500 MPa, respectively. The ductility was improved and the hardness was also enhanced by 25%. The fracture mechanism was investigated in detail. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pack aluminide coating is a useful method for conferring oxidation resistance on nickel-base superalloys. Nominally, these coatings have a matrix composed of a Ni-Al based B2-type phase (commonly denoted as Β). However, following high-temperature exposure in oxidative envi-ronments, aluminum is depleted from the coating. Aluminum depletion in turn, leads to de-stabilization of the Β phase, resulting in the formation of a characteristic lathlike Β-derivative microstructure. This article presents a transmission electron microscopy study of the formation of the lathlike Β-derivative microstructure using bulk nickel aluminides as model alloys. In the bulk nickel aluminides, the lathlike microstructure has been found to correspond to two distinct components: L10-type martensite and a new Β derivative. The new Β derivative is characterized and the conditions associated with the presence of this feature are identified and compared with those leading to the formation of the L10 martensitic phase. © 1995 The Minerals, Metals & Material Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyophilisation or freeze drying is the preferred dehydrating method for pharmaceuticals liable to thermal degradation. Most biologics are unstable in aqueous solution and may use freeze drying to prolong their shelf life. Lyophilisation is however expensive and has seen lots of work aimed at reducing cost. This thesis is motivated by the potential cost savings foreseen with the adoption of a cost efficient bulk drying approach for large and small molecules. Initial studies identified ideal formulations that adapted well to bulk drying and further powder handling requirements downstream in production. Low cost techniques were used to disrupt large dried cakes into powder while the effects of carrier agent concentration were investigated for powder flowability using standard pharmacopoeia methods. This revealed superiority of crystalline mannitol over amorphous sucrose matrices and established that the cohesive and very poor flow nature of freeze dried powders were potential barriers to success. Studies from powder characterisation showed increased powder densification was mainly responsible for significant improvements in flow behaviour and an initial bulking agent concentration of 10-15 %w/v was recommended. Further optimisation studies evaluated the effects of freezing rates and thermal treatment on powder flow behaviour. Slow cooling (0.2 °C/min) with a -25°C annealing hold (2hrs) provided adequate mechanical strength and densification at 0.5-1 M mannitol concentrations. Stable bulk powders require powder transfer into either final vials or intermediate storage closures. The targeted dosing of powder formulations using volumetric and gravimetric powder dispensing systems where evaluated using Immunoglobulin G (IgG), Lactate Dehydrogenase (LDH) and Beta Galactosidase models. Final protein content uniformity in dosed vials was assessed using activity and protein recovery assays to draw conclusions from deviations and pharmacopeia acceptance values. A correlation between very poor flowability (p<0.05), solute concentration, dosing time and accuracy was revealed. LDH and IgG lyophilised in 0.5 M and 1 M mannitol passed Pharmacopeia acceptance values criteria with 0.1-4 while formulations with micro collapse showed the best dose accuracy (0.32-0.4% deviation). Bulk mannitol content above 0.5 M provided no additional benefits to dosing accuracy or content uniformity of dosed units. This study identified considerations which included the type of protein, annealing, cake disruption process, physical form of the phases present, humidity control and recommended gravimetric transfer as optimal for dispensing powder. Dosing lyophilised powders from bulk was demonstrated as practical, time efficient, economical and met regulatory requirements in cases. Finally the use of a new non-destructive technique, X-ray microcomputer tomography (MCT), was explored for cake and particle characterisation. Studies demonstrated good correlation with traditional gas porosimetry (R2 = 0.93) and morphology studies using microscopy. Flow characterisation from sample sizes of less than 1 mL was demonstrated using three dimensional X-ray quantitative image analyses. A platinum-mannitol dispersion model used revealed a relationship between freezing rate, ice nucleation sites and variations in homogeneity within the top to bottom segments of a formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use first-principles electronic structure methods to show that the piezoresistive strain gauge factor of single-crystalline bulk n-type silicon-germanium alloys at carefully controlled composition can reach values of G = 500, three times larger than that of silicon, the most sensitive such material used in industry today. At cryogenic temperatures of 4 K we find gauge factors of G = 135 000, 13 times larger than that observed in Si whiskers. The improved piezoresistance is achieved by tuning the scattering of carriers between different (Delta and L) conduction band valleys by controlling the alloy composition and strain configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bimetallic alloys are increasingly used in heterogeneous catalysis. This interest is explained by the emergence of new features that are absent in the parent single metals. Synergistic effects between the two combined elements create a more efficient catalyst. One of the most challenging aspect of multicomponent materials in catalysis is the ability to fine-tune the catalytic properties of an alloy by controlling the nature and composition of the surface [1]. For example, the gold/silver alloy combines a high activity and a large selectivity for a broad range of oxidation reaction.It is well established that the surface composition of alloys may deviate from that of the bulk phase. Surface enrichment has also important consequences in some applications of heterogeneous catalysis. In some cases, the thermal and chemical treatments can lead to opposite trends regarding the nature of the metal prone to surface enrichment. Using atom probe tomography we aim to link the physicochemical conditions the composition of the very first atomic layers of bimetallic catalysts and eventually to fine-tune the catalytic features of the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.