911 resultados para Building materials.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in recent years on the performance of FRP reinforced timber and engineered wood products. This paper gives a State of the Art summary of material formulations, application areas, design approaches and quality control issues for practical engineers to introduce on-site bonding of FRP to timber as a new way in design for structural repair and rehabilitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compressive strength, Young's modulus (stiffness), stress-strain curve and energy absorption capacity (toughness). The effects of two parameters, namely steel fiber volume content (0%, 0.5%, 1%, 1.5%) and temperature (room temperature, 200 °C, 400 °C and 600 °C) on the compressive mechanical properties of concrete were investigated. The test results show that both compressive strength and stiffness of the concrete are significantly reduced after exposure to high temperatures. The addition of steel fibers is helpful in preventing spalling, and significantly improves the ductility and the cracking behavior of recycled aggregate concrete (RAC) after exposure to high temperatures, which is favorable for the application of RAC in building construction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several factors affecting the reactivity of pulverised fuel ash (pfa) as a precursor for geopolymer concrete have been investigated. These include physical and chemical properties of various pfa sources, inclusion of ground granulated blast furnace slag (ggbs), chemical activator dosages and curing temperature. Alkali-activated pfa was found to require elevated curing temperatures and high alkali concentrations. A mixture of sodium hydroxide and sodium silicate was used and this was shown to result in high strengths, as high as 70 MPa at 28-days. The presence of silicates in solution was found to be a key factor. Detailed physical and chemical characterisation was carried out on thirteen pfa sources from the UK. The most important factor affecting the reactivity was found to be the particle size of pfa. The loss on ignition (LOI) and the amorphous content are also important parameters that need to be considered for the selection of pfa for use in geopolymer concrete. The partial replacement of pfa by ground granulated blast furnace slag (ggbs) was found to be beneficial in not only avoiding the need for elevated curing temperatures but also in improving compressive strengths. Microstructural characterisation with scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) was performed on pfa/ggbs pastes. The reaction product of pfa and ggbs in these binary systems was calcium aluminium silicate hydrate gel (C-A-S-H) with inclusion of Na in the structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability, but most previous research projects and case studies have focused on concretes without cracks or not subjected to any structural load. Although it has been recognised that structural cracks do influence the chloride transport and chloride induced corrosion in reinforced concrete structures, there is little published work on the influence of micro-cracks due to service loads on these properties. Therefore the effect of micro-cracks caused by loading on chloride transport into concrete was studied. Four different stress levels (0%, 25%, 50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete discs and chloride migration was measured using a bespoke test setup based on the NT BUILD 492 test. The effects of replacing Portland cement CEMI by ground granulated blast-furnace slag (GGBS), pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading were studied. The results have indicated that chloride migration coefficients changed little when the stress level was below 50% of the fu; however, it is desirable to keep concrete stress less than 25% fu if this is practical. The effect of removing the load on the change of chloride migration coefficient was also studied. A recovery of around 50% of the increased chloride migration coefficient was found in the case of concretes subjected to 75% of the fu when the load was removed.