934 resultados para Branch and bound algorithms
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Objective: The study we assessed how often patients who are manifesting a myocardial infarction (MI) would not be considered candidates for intensive lipid-lowering therapy based on the current guidelines. Methods: In 355 consecutive patients manifesting ST elevation MI (STEMI), admission plasma C-reactive protein (CRP) was measured and Framingham risk score (FRS), PROCAM risk score, Reynolds risk score, ASSIGN risk score, QRISK, and SCORE algorithms were applied. Cardiac computed tomography and carotid ultrasound were performed to assess the coronary artery calcium score (CAC), carotid intima-media thickness (cIMT) and the presence of carotid plaques. Results: Less than 50% of STEMI patients would be identified as having high risk before the event by any of these algorithms. With the exception of FRS (9%), all other algorithms would assign low risk to about half of the enrolled patients. Plasma CRP was <1.0 mg/L in 70% and >2 mg/L in 14% of the patients. The average cIMT was 0.8 +/- 0.2 mm and only in 24% of patients was >= 1.0 mm. Carotid plaques were found in 74% of patients. CAC > 100 was found in 66% of patients. Adding CAC >100 plus the presence of carotid plaque, a high-risk condition would be identified in 100% of the patients using any of the above mentioned algorithms. Conclusion: More than half of patients manifesting STEMI would not be considered as candidates for intensive preventive therapy by the current clinical algorithms. The addition of anatomical parameters such as CAC and the presence of carotid plaques can substantially reduce the CVD risk underestimation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Despite the strong influence of plant architecture on crop yield, most crop models either ignore it or deal with it in a very rudimentary way. This paper demonstrates the feasibility of linking a model that simulates the morphogenesis and resultant architecture of individual cotton plants with a crop model that simulates the effects of environmental factors on critical physiological processes and resulting yield in cotton. First the varietal parameters of the models were made concordant. Then routines were developed to allocate the flower buds produced each day by the crop model amongst the potential positions generated by the architectural model. This allocation is done according to a set of heuristic rules. The final weight of individual bolls and the shedding of buds and fruit caused by water, N, and C stresses are processed in a similar manner. Observations of the positions of harvestable fruits, both within and between plants, made under a variety of agronomic conditions that had resulted in a broad range of plant architectures were compared to those predicted by the model with the same environmental inputs. As illustrated by comparisons of plant maps, the linked models performed reasonably well, though performance of the fruiting point allocation and shedding algorithms could probably be improved by further analysis of the spatial relationships of retained fruit. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background and Purpose: Precise needle puncture of the kidney is a challenging and essential step for successful percutaneous nephrolithotomy (PCNL). Many devices and surgical techniques have been developed to easily achieve suitable renal access. This article presents a critical review to address the methodologies and techniques for conducting kidney targeting and the puncture step during PCNL. Based on this study, research paths are also provided for PCNL procedure improvement. Methods: Most relevant works concerning PCNL puncture were identified by a search of Medline/PubMed, ISI Web of Science, and Scopus databases from 2007 to December 2012. Two authors independently reviewed the studies. Results: A total of 911 abstracts and 346 full-text articles were assessed and discussed; 52 were included in this review as a summary of the main contributions to kidney targeting and puncturing. Conclusions: Multiple paths and technologic advances have been proposed in the field of urology and minimally invasive surgery to improve PCNL puncture. The most relevant contributions, however, have been provided by the applicationofmedical imaging guidance, newsurgical tools,motion tracking systems, robotics, andimage processing and computer graphics. Despite the multiple research paths for PCNL puncture guidance, no widely acceptable solution has yet been reached, and it remains an active and challenging research field. Future developments should focus on real-time methods, robust and accurate algorithms, and radiation free imaging techniques
Resumo:
ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values of the direct effects were in agreement with the values of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.
Resumo:
This paper presents an agent-based simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, considering user risk preferences. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions. In the simulated market agents interact in several different ways and may joint together to form coalitions. In this paper we address multi-agent coalitions to analyse Distributed Generation in Electricity Markets
Resumo:
OBJECTIVE: Previous experiments showed that caffeine blocks the development of Aedes aegypti (Diptera, Culicidae) in the larval stage, consequently inhibiting the production of adults. This study aimed at obtaining data suggestive of caffeine resistance by these mosquitoes. METHODS: Experiments were carried out in successive generations to assess adult production from eggs laid in previous generation and oviposition rate in every generation using 200 and 500 µg/mL caffeine. Tap water was used as control. Experiments were conducted in the city of São José do Rio Preto, Southeastern Brazil between 2002 and 2005. Statistical tests consisted of exploratory data analysis and smoothing algorithms. RESULTS: Increasing reduction in productivity of adults occurred among generations at both caffeine concentrations but the differences were only significant at 200µg/mL caffeine. As for the oviposition rate, there was a decrease in the mean number of eggs per female over generations at both caffeine concentrations. CONCLUSIONS: There was no evidence of caffeine resistance over generations. The study results corroborate caffeine as an alternative as an important Ae. Aegypti control agent to avoid resistance.
Resumo:
The calculation of the dose is one of the key steps in radiotherapy planning1-5. This calculation should be as accurate as possible, and over the years it became feasible through the implementation of new algorithms to calculate the dose on the treatment planning systems applied in radiotherapy. When a breast tumour is irradiated, it is fundamental a precise dose distribution to ensure the planning target volume (PTV) coverage and prevent skin complications. Some investigations, using breast cases, showed that the pencil beam convolution algorithm (PBC) overestimates the dose in the PTV and in the proximal region of the ipsilateral lung. However, underestimates the dose in the distal region of the ipsilateral lung, when compared with analytical anisotropic algorithm (AAA). With this study we aim to compare the performance in breast tumors of the PBC and AAA algorithms.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ciências do Ambiente pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecn
Resumo:
This article introduces schedulability analysis for global fixed priority scheduling with deferred preemption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). We show how schedulability can be improved using gFPDS via appropriate choice of priority assignment and final non-pre-emptive region lengths, and provide algorithms which optimize schedulability in this way. Via an experimental evaluation we compare the performance of multiprocessor scheduling using global approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches employing FPDS, FPPS, and FPNS on each processor.
Resumo:
Neuroschistosomiasis (NS) is the second most common form of presentation of infection by the trematode, Schistosoma mansoni. Granulomatous inflammatory reaction occurs as a result of schistosome eggs being transmitted to spinal cord or brain via the vascular system, or by inadvertent adult worm migration to these organs. The two main clinical syndromes are spinal cord neuroschistosomiasis (acute or subacute myelopathy) and localized cerebral or cerebellar neuroschistosomiasis (focal CNS impairment, seizures, increased intracranial pressure). Presumptive diagnosis of NS requires confirming the presence of S. mansoni infection by stool microscopy or rectal biopsy for trematode eggs, and serologic testing of blood and spinal fluid. The localized lesions are identified by signs and symptoms, and confirmed by imaging techniques (contrast myelography, CT and MRI). Algorithms are presented to allow a stepwise approach to diagnosis.