948 resultados para Brain Natriuretic Peptide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette année, nous avons résumé les avances dans deux pathologies très fréquentes et deux plus rares : 1) la cryptorchidie est opérée plus précocement sans utiliser des hormones. Ce traitement vise à assurer la fertilité et à éviter le développement de tumeurs testiculaires. 2) Dans le traitement de la pharyngite streptococcique, les céphalosporines orales durant quatre à cinq jours, peuvent remplacer la pénicilline. 3) Le carvédilol (bêtabloquant), le lévosimendan (sensibilisateur du calcium) et le nésiritide (analogue du peptide natriurétique) permettent une approche neurohormonale à l'insuffisance cardiaque. 4) Les glucocorticoïdes administrés tôt et une prise en charge multidisciplinaire ralentissent le cours de la dystrophie musculaire de Duchenne. This article summarizes the medical progress achieved in 2 frequent and 2 rare pathologies: 1. Cryptorchidism should be operated around 12 months of age and hormonal treatment abandoned in order to maintain fertility and avoid development of testicular tumors. 2. For the treatment of streptococcal pharyngitis oral cephalosporins for 4 to 5 days are equivalent to a Penicillin treatment of 10 days. 3. Thanks to carvedilol (a beta-blocker agent), levosimendan (a calcium sensibiliser) and nesiritide (an analog to the natriuretic peptide) a new hormonal approach to cardiac failure is possible. 4. Corticosteroids allow to improve quality of live and life expectancy in Duchenne muscular dystrophy, provided treatment starts early and a multidisciplinary approach is assured

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the antihypertensive efficacy of sinorphan, an orally active inhibitor of neutral endopeptidase EC 3.4.24.11. DESIGN: The ability of sinorphan (100 mg twice a day) to lower blood pressure was compared with that of the angiotensin converting enzyme (ACE) inhibitor captopril (25 mg twice a day) using a randomized-sequence, double-blind crossover design in 16 patients with essential hypertension. Each treatment was administered for 4 weeks and treatments were separated by a 3-week placebo period. At the end of the last phase of treatment sinorphan was combined with captopril for a further 4-week period. The changes in systolic (SBP) and diastolic blood pressure (DBP) were monitored using repeated ambulatory blood pressure monitoring. RESULTS: When given as monotherapy for 4 weeks, neither sinorphan nor captopril significantly reduced the 24-h or the 14-h daytime mean SBP or DBP. However, a significant decrease in DBP was observed during the first 6 h after the morning administration of captopril. With sinorphan only a significant decrease in night-time SBP was found. With the combined therapy of sinorphan and captopril, significant decreases both in SBP and in DBP were observed, which were sustained over 24 h. After 4 weeks of sinorphan alone or in combination with captopril, no change in plasma atrial natriuretic peptide level was found. However, urinary cyclic GMP excretion increased transiently after administration of the neutral endopeptidase inhibitor. CONCLUSIONS: Neutral endopeptidase inhibition with sinorphan has a limited effect on blood pressure in hypertensive patients when given alone. However, simultaneous neutral endopeptidase and ACE inhibition induces a synergistic effect, and might therefore represent an interesting new therapeutic approach to the treatment of essential hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: MDL 100,240 (pyrido[2,1-a] [2]benzazepine-4-carboxylic acid,7-[[2-(acetylthio)-1-oxo-3-phenylpropyl]amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo, [4S-[4alpha,7alpha(R(*)),12bbeta]]-) is a molecule possessing an inhibiting ability on both angiotensin converting enzyme (ACE) and neutral endopeptidase, the enzyme responsible for atrial natriuretic peptide (ANP) degradation. Such a dual mechanism of action presents a potential clinical interest for the treatment of hypertension and congestive heart failure. OBJECTIVES: To evaluate the bioavailability of MDL 100,240 and its accumulation over repeated oral administration, using ACE inhibition as a surrogate for plasma drug level and determining its profile after oral and i.v. administration. METHODS: First, in an open, one-period, single-dose study, the ACE inhibition profile was characterised following a 12.5 mg MDL 100,240 i.v. infusion. Second, in a three-group, parallel, randomised, double-blind study, each group of four subjects received q.d., over 8 days, 2.5, 10 or 20 mg of MDL 100,240 orally. The ACE inhibition profile was determined on day 1 and day 8. Trough plasma ACE was measured on days 2, 3 and 4. The recovery of ACE activity was monitored up to 72 h after the last dose of MDL 100,240. RESULTS: ACE inhibition profile was similar on day 1 and day 8, and trough inhibition remained unchanged after the 8 days of treatment with 10 mg or 20 mg. Following repeated 2.5-mg ingestion, trough inhibition increased from 33% to 44% after the eighth dose. The oral bioavailability of MDL 100,240 was estimated at 85%, not statistically different from 100%. The accumulation ratio at steady state was estimated at 112%. Expressing the accumulation ratio in terms of half-life, a t(1/2) of 0.31 days or 7. 5 h was estimated. CONCLUSION: MDL 100,240 (oral solution) has a good bioavailability, as estimated by ACE inhibition, and no drug accumulation seems to occur over 8 days with the 10-mg and 20-mg doses, but a slight rise in the trough level is observed with the 2. 5-mg dose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three important studies on acute exacerbations of chronic obstructive pulmonary disease (ECOPD)have been published in Thorax. Two of them, by Chang et al1(see page 764) and Hoiset et al2 (see page 775), show the importance of the cardiac biomarkers troponin T and NT-BNP (Nterminal pro-B-type natriuretic peptide) as strong predictors of the increased risk of death of patients hospitalised because of ECOPD.1 2.....

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume

Relevância:

80.00% 80.00%

Publicador:

Resumo:

a-Melanocyte-stimulating hormone (a-MSH; 0.6 and 3 nmol) microinjected into the anteroventral region of the third ventricle (AV3V) induced a significant increase in diuresis without modifying natriuresis or kaliuresis. Intraperitoneal (ip) injection of a-MSH (3 and 9.6 nmol) induced a significant increase in urinary sodium, potassium and water excretion. Intraperitoneal (3 and 4.8 nmol) or iv (3 and 9.6 nmol) administration of a-MSH did not induce any significant changes in plasma atrial natriuretic peptide (ANP), suggesting that the natriuresis, kaliuresis and diuresis induced by the systemic action of a-MSH can be dissociated from the increase in plasma ANP. These preliminary results suggest that a-MSH may be involved in a g-MSH-independent mechanism of regulation of hydromineral metabolism

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interplay of vasoactive peptide systems is an essential determinant of blood pressure regulation in mammals. While the endothelin and the renin-angiotensin systems raise blood pressure by inducing vasoconstriction and sodium retention, the kallikrein-kinin and the natriuretic-peptide systems reduce arterial pressure by eliciting vasodilatation and natriuresis. Transgenic technology has proven to be very useful for the functional analysis of vasoactive peptide systems. As an outstanding example, transgenic rats overexpressing the mouse Ren-2 renin gene in several tissues become extremely hypertensive. Several other transgenic rat and mouse strains with genetic modifications of components of the renin-angiotensin system have been developed in the past decade. Moreover, in recent years gene-targeting technology was employed to produce mouse strains lacking these proteins. The established animal models as well as the main insights gained by their analysis are summarized in this review.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is an important component of the renin-angiotensin system and that the actions of the peptide may either contribute to or oppose those of Ang II. Ang-(1-7) can be converted directly from Ang I bypassing prerequisite formation of Ang II. Formation of Ang-(1-7) is under the control of at least three endopeptidases depending on the tissue compartment and include neprilysin, thimet oligopeptidase and prolyl oligopeptidase. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. These enzymatic pathways may contribute to a complex relationship between the hypertensive actions of Ang II and various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor, central pressor, or thirst-stimulating actions associated with Ang II. In fact, new findings reveal depressor, vasodilator, and antihypertensive actions that may be more apparent in hypertensive animals or humans. Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result of increasing prostaglandins or nitric oxide. In this review, we examine the mechanisms by which Ang-(1-7) may contribute to cardiovascular regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uroguanylin and guanylin are newly discovered endogenous heat-stable peptides that bind to and activate a membrane bound guanylyl cyclase signaling receptor (termed guanylyl cyclase C; GC-C). These peptides are not only found in blood but are secreted into the lumen of the intestine and effect a net secretion of electrolytes (Na+, K+, Cl-, HCO3-) and fluid into the intestine via a cyclic guanosine-3',5'-monophosphate (cGMP) mechanism. GC-C is also the receptor for Escherichia coli heat-stable enterotoxin (STa) and activation by STa results in a diarrheal illness. Employing mouse renal in vivo models, we have demonstrated that uroguanylin, guanylin, and STa elicit natriuretic, kaliuretic, and diuretic effects. These biological responses are time- and dose-dependent. Maximum natriuretic and kaliuretic effects are observed within 30-40 min following infusion with pharmacological doses of the peptides in a sealed-urethra mouse model. Our mouse renal clearance model confirms these results and shows significant natriuresis following a constant infusion of uroguanylin for 30 min, while the glomerular filtration rate, plasma creatinine, urine osmolality, heart rate, and blood pressure remain constant. These data suggest the peptides act through tubular transport mechanisms. Consistent with a tubular mechanism, messenger RNA-differential display PCR of kidney RNA extracted from vehicle- and uroguanylin-treated mice show the message for the Na+/K+ ATPase g-subunit is down-regulated. Interestingly, GC-C knockout mice (Gucy2c -/-) also exhibit significant uroguanylin-induced natriuresis and kaliuresis in vivo, suggesting the presence of an alternate receptor signaling mechanism in the kidney. Thus, uroguanylin and guanylin seem to serve as intestinal and renal natriuretic peptide-hormones influencing salt and water transport in the kidney through GC-C dependent and independent pathways. Furthermore, our recent clinical probe study has revealed a 70-fold increase in levels of urinary uroguanylin in patients with congestive heart failure. In conclusion, our studies support the concept that uroguanylin and guanylin are endogenous effector peptides involved in regulating body salt and water homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus) or hormones (oxytocin, atrial natriuretic peptide), in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.