963 resultados para Box-constrained optimization
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.
Resumo:
To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.
Resumo:
Seaport container terminals are an important part of the logistics systems in international trades. This paper investigates the relationship between quay cranes, yard machines and container storage locations in a multi-berth and multi-ship environment. The aims are to develop a model for improving the operation efficiency of the seaports and to develop an analytical tool for yard operation planning. Due to the fact that the container transfer times are sequence-dependent and with the large number of variables involve, the proposed model cannot be solved in a reasonable time interval for realistically sized problems. For this reason, List Scheduling and Tabu Search algorithms have been developed to solve this formidable and NP-hard scheduling problem. Numerical implementations have been analysed and promising results have been achieved.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
Compared with viewing videos on PCs or TVs, mobile users have different experiences in viewing videos on a mobile phone due to different device features such as screen size and distinct usage contexts. To understand how mobile user’s viewing experience is impacted, we conducted a field user study with 42 participants in two typical usage contexts using a custom-designed iPhone application. With user’s acceptance of mobile video quality as the index, the study addresses four influence aspects of user experiences, including context, content type, encoding parameters and user profiles. Accompanying the quantitative method (acceptance assessment), we used a qualitative interview method to obtain a deeper understanding of a user’s assessment criteria and to support the quantitative results from a user’s perspective. Based on the results from data analysis, we advocate two user-driven strategies to adaptively provide an acceptable quality and to predict a good user experience, respectively. There are two main contributions from this paper. Firstly, the field user study allows a consideration of more influencing factors into the research on user experience of mobile video. And these influences are further demonstrated by user’s opinions. Secondly, the proposed strategies — user-driven acceptance threshold adaptation and user experience prediction — will be valuable in mobile video delivery for optimizing user experience.
Resumo:
The aim of the study is to establish optimum building aspect ratios and south window sizes of residential buildings from thermal performance point of view. The effects of 6 different building aspect ratios and eight different south window sizes for each building aspect ratio are analyzed for apartments located at intermediate floors of buildings, by the aid of the computer based thermal analysis program SUNCODE-PC in five cities of Turkey: Erzurum, Ankara, Diyarbakir, Izmir, and Antalya. The results are evaluated in terms of annual energy consumption and the optimum values are driven. Comparison of optimum values and the total energy consumption rates is made among the analyzed cities.
Resumo:
There are many applications in aeronautics where there exist strong couplings between disciplines. One practical example is within the context of Unmanned Aerial Vehicle(UAV) automation where there exists strong coupling between operation constraints, aerodynamics, vehicle dynamics, mission and path planning. UAV path planning can be done either online or offline. The current state of path planning optimisation online UAVs with high performance computation is not at the same level as its ground-based offline optimizer's counterpart, this is mainly due to the volume, power and weight limitations on the UAV; some small UAVs do not have the computational power needed for some optimisation and path planning task. In this paper, we describe an optimisation method which can be applied to Multi-disciplinary Design Optimisation problems and UAV path planning problems. Hardware-based design optimisation techniques are used. The power and physical limitations of UAV, which may not be a problem in PC-based solutions, can be approached by utilizing a Field Programmable Gate Array (FPGA) as an algorithm accelerator. The inevitable latency produced by the iterative process of an Evolutionary Algorithm (EA) is concealed by exploiting the parallelism component within the dataflow paradigm of the EA on an FPGA architecture. Results compare software PC-based solutions and the hardware-based solutions for benchmark mathematical problems as well as a simple real world engineering problem. Results also indicate the practicality of the method which can be used for more complex single and multi objective coupled problems in aeronautical applications.
Resumo:
A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated
Resumo:
The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.
Resumo:
We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.