944 resultados para Blood serum
Resumo:
Aim: To examine if fasting affects serum bilirubin levels in clinical healthy males and females. Methods: We utilised retrospective data from phase 1 clinical trials where blood was collected in either a fed or fasting state at screening and pre-dosing time points and analysed for total bilirubin levels as per standard clinical procedures. Participants were clinically healthy males (n = 105) or females (n = 30) aged 18 to 48 inclusive who participated in a phase 1 clinical trial in 2012 or 2013. Results: We found a statistically significant increase in total serum bilirubin levels in fasting males as compared to non-fasting males. The fasting time correlated positively with increased bilirubin levels. The age of the healthy males did not correlate with their fasting bilirubin level. We found no correlation between fasting and bilirubin levels in clinically normal females. Conclusions: The recruitment and screening of volunteers for a clinical trial is a time-consuming and expensive process. This study clearly demonstrates that testing for serum bilirubin should be conducted on non-fasting male subjects. If fasting is required, then participants should not be excluded from a trial based on an elevated serum bilirubin that is deemed non-clinically significant.
Resumo:
The Quantitative Assessment of Solar UV [ultraviolet] Exposure for Vitamin D Synthesis in Australian Adults (AusD) Study aimed to better define the relationship between sun exposure and serum 25-hydroxyvitamin D (25(OH)D) concentration. Cross-sectional data were collected between May 2009 and December 2010 from 1,002 participants aged 18-75 years in 4 Australian sites spanning 24° of latitude. Participants completed the following: 1) questionnaires on sun exposure, dietary vitamin D intake, and vitamin D supplementation; 2) 10 days of personal ultraviolet radiation dosimetry; 3) a sun exposure and physical activity diary; and 4) clinical measurements and blood collection for 25(OH)D determination. Our multiple regression model described 40% of the variance in 25(OH)D concentration; modifiable behavioral factors contributed 52% of the explained variance, and environmental and demographic or constitutional variables contributed 38% and 10%, respectively. The amount of skin exposed was the single strongest contributor to the explained variance (27%), followed by location (20%), season (17%), personal ultraviolet radiation exposure (8%), vitamin D supplementation (7%), body mass index (weight (kg)/height (m)2) (4%), and physical activity (4%). Modifiable behavioral factors strongly influence serum 25(OH)D concentrations in Australian adults. In addition, latitude was a strong determinant of the relative contribution of different behavioral factors.
Resumo:
The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.
Resumo:
Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.
Resumo:
The high priority of monitoring workers exposed to nitrobenzene is a consequence of clear findings of experimental carcinogenicity of nitrobenzene and the associated evaluations by the International Agency for Research on Cancer. Eighty male employees of a nitrobenzene reduction plant, with potential skin contact with nitrobenzene and aniline, participated in a current medical surveillance programme. Blood samples were routinely taken and analysed for aniline, 4-aminodiphenyl (4-ADP) and benzidine adducts of haemoglobin (Hb) and human serum albumin (HSA). Also, levels of methaemoglobin (Met-Hb) and of carbon monoxide haemoglobin (CO-Hb) were monitored. Effects of smoking were straightforward. Using the rank sum test of Wilcoxon, we found that very clear-cut and statistically significant smoking effects (about 3-fold increases) were apparent on CO-Hb (P = 0.00085) and on the Hb adduct of 4-ADP (P = 0.0006). The mean aniline-Hb adduct level in smokers was 1.5 times higher than in non-smokers; the significance (P = 0.05375) was close to the 5% level. The strongest correlation was evident between the Hb and HSA adducts of aniline (rs = 0.846). Less pronounced correlations (but with P values < 0.02) appeared between aniline-Hb and 4-ADP-Hb adducts (rs = 0.388), between 4-ADP and 4-ADP-HSA adducts (rs = 0.373), and between 4-ADP-Hb and aniline-HSA adducts (rs = 0.275). In view of the proposal for additional use of the aniline-HSA adduct for biological monitoring, particularly in cases of acute overexposures or poisonings, the strong correlation of the Hb and HSA conjugates is noteworthy; the ratio aniline-HSA:aniline-Hb was 1:42 for the entire cohort.
Resumo:
Polybrominated diphenylethers (PBDEs) are widely used as flame retardants in polymer materials, textiles, electronic boards and various other materials. Technical PBDE preparations are produced as mixtures of mainly penta-, octa- or decabrombiphenyl ethers1,2. PBDEs are structurally similar to other environmental pollutants like dioxins and PCBs, they are lipophilic and persistent compounds and are widespread in the environment. To date, no information is available on the levels of PBDEs in human serum in Australia. In 2003, more than 9000 blood samples were collected in Australia as part of the National Dioxins Program. The aim of this study was to evaluate PBDE concentrations in these samples, focusing on one age group.
Resumo:
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Resumo:
Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
Resumo:
Transfusion of blood components has been associated with poor patient outcomes and, an overall increase in morbidity and mortality. Differences in the blood components arising from donor health, age and immune status may impact on outcomes of transfusion and transfusion-related immune modulation in recipients. The aim of this study was to investigate differences in inflammatory profile in donors and association with parameters including age, gender and deficiency status of pattern recognition molecule mannose-binding lectin (MBL). MBL level was determined by ELISA. Serum levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, tumour necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1, interferon (IFN)-α, and IFN-γ were examined by cytometric bead array (CBA). C-reactive protein (CRP) and rheumatoid factor (RF) were examined by immunoturbidimetry. This study demonstrated age was a parameter associated with the immune profile of blood donors, with significant increases in MCP-1 (p < 0.05) and RF (p < 0.05) and decreases in IL-1α evident in the older donors (61–76 years). Significant gender-associated differences in MCP-1, IL-12 and CRP plasma levels in the blood donor cohort were also reported. There was no significant difference in the level of any inflammatory markers studied according to MBL status. This study demonstrated that age and gender are associated with inflammatory profile in donors. These differences may be a factor impacting on outcomes of transfusion.
Resumo:
Vitamin D is synthesised in the skin through the action of UVB radiation (sunlight), and 25-hydroxy vitamin D (25OHD) measured in serum as a marker of vitamin D status. Several studies, mostly conducted in high latitudes, have shown an association between type 1 diabetes mellitus (T1DM) and low serum 25OHD. We conducted a case-control study to determine whether, in a sub-tropical environment with abundant sunlight (latitude 27.5°S), children with T1DM have lower serum vitamin D than children without diabetes. Fifty-six children with T1DM (14 newly diagnosed) and 46 unrelated control children participated in the study. Serum 25OHD, 1,25-dihydroxy vitamin D (1,25(OH)2D) and selected biochemical indices were measured. Vitamin D receptor (VDR) polymorphisms Taq1, Fok1, and Apa1 were genotyped. Fitzpatrick skin classification, self-reported daily hours of outdoor exposure, and mean UV index over the 35d prior to blood collection were recorded. Serum 25OHD was lower in children with T1DM (n=56) than in controls (n=46) [mean (95%CI)=78.7 (71.8-85.6) nmol/L vs. 91.4 (83.5-98.7) nmol/L, p=0.02]. T1DM children had lower self-reported outdoor exposure and mean UV exposure, but no significant difference in distribution of VDR polymorphisms. 25OHD remained lower in children with T1DM after covariate adjustment. Children newly diagnosed with T1DM had lower 1,25(OH)2D [median (IQR)=89 (68-122) pmol/L] than controls [121 (108-159) pmol/L, p=0.03], or children with established diabetes [137 (113-153) pmol/L, p=0.01]. Children with T1DM have lower 25OHD than controls, even in an environment of abundant sunlight. Whether low vitamin D is a risk factor or consequence of T1DM is unknown. © 2012 John Wiley & Sons A/S.
Resumo:
Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis
Resumo:
We evaluated the development of the exocrine pancreas in 16 healthy preterm infants (29.3 ± 1.6 weeks). The infants were fed breast milk with formula supplements (n=8) or formula alone (n=8). Growth was monitored weekly for 12 weeks then at 3, 6, 9, 12 months. At the same intervals sera were determined for pancreatic lipase and cationic trypsinogen. In addition, cord blood samples were analysed from another 33 preterm (27.6 ± 5.2 weeks) and 75 healthy full-term infants. Serum pancreatic lipase in the cord blood of term (3.7 ± 0.4 μg/l) and preterm infants (1.8 ± 0.2 μg/l) was significantly below values reported for older children (10.5 ± 0.9 μg/l; p < 0.001). In the preterm infant, serum lipase was also significantly lower than values obtained at term (p < 0.001). At birth, serum trypsinogen for preterm (16.8 ± 1.3 μg/l) and term infants (23.3 ± 1.9 μg/l) were below those for older children (31.4 ± 3.7 μg/l; p < 0.05). Over the first 3 weeks of life, serum lipase and trypsinogen increased significantly. From 3 weeks to 12 months of age, serum trypsinogen values remained unchanged, but serum lipase increased dramatically after 10 weeks of age. Thus, at 6 and 12 months of age, the preterm infants had significantly higher serum lipase values than infants of the same age born at term. These two pancreatic enzymes appear to show independent age-related maturation in infants born before term. The rate of maturation of lipase appears to be accelerated by exposure to the extrauterine environment.
Resumo:
Indirect and qualitative tests of pancreatic function are commonly used to screen patients with cystic fibrosis for pancreatic insufficiency. In an attempt to develop a more quantitative assessment, we compared the usefulness of measuring serum pancreatic lipase using a newly developed enzyme-linked immunosorbent immunoassay with that of cationic trypsinogen using a radioimmunoassay in the assessment of exocrine pancreatic function in patients with cystic fibrosis. Previously, we have shown neither lipase nor trypsinogen to be of use in assessing pancreatic function prior to 5 years of age because the majority of patients with cystic fibrosis in early infancy have elevated serum levels regardless of pancreatic function. Therefore, we studied 77 patients with cystic fibrosis older than 5 years of age, 41 with steatorrhea and 36 without steatorrhea. In addition, 28 of 77 patients consented to undergo a quantitative pancreatic stimulation test. There was a significant difference between the steatorrheic and nonsteatorrheic patients with the steatorrheic group having lower lipase and trypsinogen values than the nonsteatorrheic group (P < .001). Sensitivities and specificities in detecting steatorrhea were 95% and 86%, respectively, for lipase and 93% and 92%, respectively, for trypsinogen. No correlations were found between the serum levels of lipase and trypsinogen and their respective duodenal concentrations because of abnormally high serum levels of both enzymes found in some nonsteatorrheic patients. We conclude from this study that both serum lipase and trypsinogen levels accurately detect steatorrhea in patients with cystic fibrosis who are older than 5 years but are imprecise indicators of specific pancreatic exocrine function above the level needed for normal fat absorption.
Resumo:
In humans with a loss of uricase the final oxidation product of purine catabolism is uric acid (UA). The prevalence of hyperuricemia has been increasing around the world accompanied by a rapid increase in obesity and diabetes. Since hyperuricemia was first described as being associated with hyperglycemia and hypertension by Kylin in 1923, there has been a growing interest in the association between elevated UA and other metabolic abnormalities of hyperglycemia, abdominal obesity, dyslipidemia, and hypertension. The direction of causality between hyperuricemia and metabolic disorders, however, is unceartain. The association of UA with metabolic abnormalities still needs to be delineated in population samples. Our overall aims were to study the prevalence of hyperuricemia and the metabolic factors clustering with hyperuricemia, to explore the dynamical changes in blood UA levels with the deterioration in glucose metabolism and to estimate the predictive capability of UA in the development of diabetes. Four population-based surveys for diabetes and other non-communicable diseases were conducted in 1987, 1992, and 1998 in Mauritius, and in 2001-2002 in Qingdao, China. The Qingdao study comprised 1 288 Chinese men and 2 344 women between 20-74, and the Mauritius study consisted of 3 784 Mauritian Indian and Mauritian Creole men and 4 442 women between 25-74. In Mauritius, re-exams were made in 1992 and/or 1998 for 1 941 men (1 409 Indians and 532 Creoles) and 2 318 non pregnant women (1 645 Indians and 673 Creoles), free of diabetes, cardiovascular diseases, and gout at baseline examinations in 1987 or 1992, using the same study protocol. The questionnaire was designed to collect demographic details, physical examinations and standard 75g oral glucose tolerance tests were performed in all cohorts. Fasting blood UA and lipid profiles were also determined. The age-standardized prevalence in Chinese living in Qingdao was 25.3% for hyperuricemia (defined as fasting serum UA > 420 μmol/l in men and > 360 μmol/l in women) and 0.36% for gout in adults between 20-74. Hyperuricemia was more prevalent in men than in women. One standard deviation increase in UA concentration was associated with the clustering of metabolic risk factors for both men and women in three ethnic groups. Waist circumference, body mass index, and serum triglycerides appeared to be independently associated with hyperuricemia in both sexes and in all ethnic groups except in Chinese women, in whom triglycerides, high-density lipoprotein cholesterol, and total cholesterol were associated with hyperuricemia. Serum UA increased with increasing fasting plasma glucose levels up to a value of 7.0 mmol/l, but significantly decreased thereafter in mainland Chinese. An inverse relationship occurred between 2-h plasma glucose and serum UA when 2-h plasma glucose higher than 8.0 mmol/l. In the prospective study in Mauritius, 337 (17.4%) men and 379 (16.4%) women developed diabetes during the follow-up. Elevated UA levels at baseline increased 1.14-fold in risk of incident diabetes in Indian men and 1.37-fold in Creole men, but no significant risk was observed in women. In conclusion, the prevalence of hyperuricemia was high in Chinese in Qingdao, blood UA was associated with the clustering of metabolic risk factors in Mauritian Indian, Mauritian Creole, and Chinese living in Qingdao, and a high baseline UA level independently predicted the development of diabetes in Mauritian men. The clinical use of UA as a marker of hyperglycemia and other metabolic disorders needs to be further studied. Keywords: Uric acid, Hyperuricemia, Risk factors, Type 2 Diabetes, Incidence, Mauritius, Chinese
Resumo:
Objectives Impaired muscle function is common in knee osteoarthritis (OA). Numerous biochemical molecules have been implicated in the development of OA; however, these have only been identified in the joint and serum. This study compared the expression of interleukin (IL-15) and Forkhead box protein-O1 (FoxO1) in muscle of patients with knee OA asymptomatic individuals, and examined whether IL-15 was also present in the joint and serum. Method Muscle and blood samples were collected from 19 patients with diagnosed knee OA and 10 age-matched asymptomatic individuals. Synovial fluid and muscle biopsies were collected from the OA group during knee replacement surgery. IL-15 and FoxO1were measured in the skeletal muscle. IL-15 abundance was also analysed in the serum of both groups and synovial fluid from the OA group. Knee extensor strength was measured and correlated with IL-15 and FoxO1 in the muscle. Results FoxO1 protein expression was higher (p=0.04), whereas IL-15 expression was lower (p=0.02) in the muscle of the OA group. Strength was also lower in the OA group, and was inversely correlated with FoxO1 expression. No correlation was found between IL-15 in the joint, muscle or serum. Conclusion Skeletal muscle, particularly the quadriceps, is affected in people with knee OA where elevated FoxO1 protein expression was associated with reduced muscle strength. While IL-15 protein expression in the muscle was lower in the knee OA group, no correlation was found between the expression of IL-15 protein in the muscle, joint and serum, which suggests that inflammation is regulated differently within these tissues.