442 resultados para Blackburn, Josh
Resumo:
As a part of the Atmospheric Model Intercomparison Project (AMIP), the behaviour of 15 general circulation models has been analysed in order to diagnose and compare the ability of the different models in simulating Northern Hemisphere midlatitude atmospheric blocking. In accordance with the established AMIP procedure, the 10-year model integrations were performed using prescribed, time-evolving monthly mean observed SSTs spanning the period January 1979–December 1988. Atmospheric observational data (ECMWF analyses) over the same period have been also used to verify the models results. The models involved in this comparison represent a wide spectrum of model complexity, with different horizontal and vertical resolution, numerical techniques and physical parametrizations, and exhibit large differences in blocking behaviour. Nevertheless, a few common features can be found, such as the general tendency to underestimate both blocking frequency and the average duration of blocks. The problem of the possible relationship between model blocking and model systematic errors has also been assessed, although without resorting to ad-hoc numerical experimentation it is impossible to relate with certainty particular model deficiencies in representing blocking to precise parts of the model formulation.
Resumo:
Precipitation forecast data from the ERA-Interim reanalysis (33 years) are evaluated using the daily England and Wales Precipitation (EWP) observations obtained from a rain gauge network. Observed and reanalysis daily precipitation data are both described well by Weibull distributions with indistinguishable shapes but different scale parameters, such that the reanalysis underestimates the observations by an average factor of 22%. The correlation between the observed and ERA-Interim time series of regional, daily precipitation is 0.91. ERA-Interim also captures the statistics of extreme precipitation including a slightly lower likelihood of the heaviest precipitation events (>15 mm day− 1 for the regional average) than indicated by the Weibull fit. ERA-Interim is also closer to EWP for the high precipitation events. Since these carry weight in longer accumulations, a smaller underestimation of 19% is found for monthly mean precipitation. The partition between convective and stratiform precipitation in the ERA-Interim forecast is also examined. In summer both components contribute equally to the total precipitation amount, while in winter the stratiform precipitation is approximately double convective. These results are expected to be relevant to other regions with low orography on the coast of a continent at the downstream end of mid-latitude stormtracks.
Resumo:
Background: There is increased interest in developing training in cognitive behaviour therapy (CBT) with children and young people. However, the assessment of clinical competence has relied upon the use of measures such as the Cognitive Therapy Scale-Revised (CTSR: Blackburn et al., 2001) which has been validated to assess competence with adults. The appropriateness of this measure to assess competence when working with children and young people has been questioned. Aim: This paper describes the development and initial evaluation of the Cognitive Behaviour Therapy Scale for Children and Young People (CBTSCYP) developed specifically to assess competence in CBT with children and young people. Method: A cross section of child CBT practitioners (n = 61) were consulted to establish face validity. Internal reliability, convergent validity and discriminative ability were assessed in two studies. In the first, 12 assessors independently rated a single video using both the Cognitive Behaviour Therapy Scale for Children and Young People (CBTS-CYP) and Cognitive Therapy Scale-Revised (CTS-Revised: Blackburn et al., 2001). In the second, 48 different recordings of CBT undertaken with children and young people were rated on both the CBTS-CYP and CTS-R. Results: Face validity and internal reliability of the CBTS-CYP were high, and convergent validity with the CTS-R was good. The CBTS-CYP compared well with the CTSR in discriminative ability. Conclusion: The CBTS-CYP provides an appropriate way of assessing competence in using CBT with children and young people. Further work is required to assess robustness with younger children and the impact of group training in reducing interrater variations.
Resumo:
The England and Wales precipitation (EWP) dataset is a homogeneous time series of daily accumulations from 1931 to 2014, composed from rain gauge observations spanning the region. The daily regional-average precipitation statistics are shown to be well described by a Weibull distribution, which is used to define extremes in terms of percentiles. Computed trends in annual and seasonal precipitation are sensitive to the period chosen, due to large variability on interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal precipitation variability are identified. These patterns project onto known leading modes of variability, all of which involve displacements of the jet stream and storm-track over the eastern Atlantic. The intensity of daily precipitation for each calendar season is investigated by partitioning all observations into eight intensity categories contributing equally to the total precipitation in the dataset. Contrary to previous results based on shorter periods, no significant trends of the most intense categories are found between 1931 and 2014. The regional-average precipitation is found to share statistical properties common to the majority of individual stations across England and Wales used in previous studies. Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a greater number of extreme events in the 3-and 5-day accumulations than any previous year in the record. It is the duration of precipitation events in these years that is remarkable, rather than the magnitude of the daily accumulations.
Resumo:
The Levine family held an extensive reunion during the Summer of 2009 during which 29 DVDs of raw material were recorded for use in the creation of a Levine family mini-documentary. Many of these DVDs contain oral history interviews conducted by Wendy Miller, one of the organizers of the reunion. Although these interviews were not designed for historical research, they contain valuable historical information. Some of the family members interviewed include: Ben Arnon (4/5), Marjorie, Stephen, and Michael Kaplan (8), Glenyce Miller Kaplan (starts in 15, continues in 9; separate interview in 13), Burt, Phyllis, and Louis Shiro (9) [Burt Shiro also in 26/27], Myrt and Gordon Wolman (9), Ted and Billy Alfond (10), Barbara and Joan Alfond (10), Susan and Peter Alfond (10), Alice Emory [caregiver for Bibby] (11), Eric Bloom and Stu Cushner (11), Saralee Kaplan Bloom (11), Sarah Miller Arnon (12), Kayla and Jenna Cushner (12), Josh Soros and Eliana Miller-Kaplan (12), Sarah, Wendy, and Julie Miller (starts in 12, continues in 14), Bill Shutzer (13), Maschia and Glicka Kaplan, Sharon Kushner, Dan Hood (13), Gene, Alex, Kate Cohen (14), Ben, Jeremy, Joselyn Arnon (14), Wendy and Julie Miller at the store (15), and Eric Bloom (15).
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes ( IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 <= f(0)/Hz <= 2000 and decay timescale 0.0001 less than or similar to tau/s less than or similar to 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 <= M/ M circle dot <= 450 and component mass ratios of either 1: 1 or 4: 1. For systems with total mass 100 <= M/M circle dot <= 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 x 10(-8) Mpc(-3) yr(-1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l = m = 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
Resumo:
In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10(-2)M circle dot c(2), with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.
Resumo:
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M(circle dot)c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Resumo:
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Resumo:
We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f(0) range from 100 Hz to 1 kHz and the frequency dependent spindown f(1) range from -1.6(f(0)/100 Hz) x 10(-9) Hz s(-1) to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the F-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5 x 10(-24).
Resumo:
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to similar to 200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M-circle dot and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M-circle dot black holes and is equal to 0.12 Mpc(-3) Myr(-1) at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by similar to 20%.
Resumo:
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to similar to 2,254 h and a frequency-and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from similar to 0.6 x 10(-3) ls to similar to 6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 x 10(-24) at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.