997 resultados para Black Movement, USA
Resumo:
Observations of an insect's movement lead to theory on the insect's flight behaviour and the role of movement in the species' population dynamics. This theory leads to predictions of the way the population changes in time under different conditions. If a hypothesis on movement predicts a specific change in the population, then the hypothesis can be tested against observations of population change. Routine pest monitoring of agricultural crops provides a convenient source of data for studying movement into a region and among fields within a region. Examples of the use of statistical and computational methods for testing hypotheses with such data are presented. The types of questions that can be addressed with these methods and the limitations of pest monitoring data when used for this purpose are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective: To assess the intrarater and interrater reliability among rheumatologists of a standardised protocol for measurement of shoulder movements using a gravity inclinometer. Methods: After instruction, six rheurnatologists independently assessed eight movements of the shoulder, including total and glenohumeral flexion, total and glenohumeral abduction, external rotation in neutral and in abduction, internal rotation in abduction and hand behind back, in random order in six patients with shoulder pain and stiffness according to a 6x6 Latin square design using a standardised protocol. These assessments were then repeated. Analysis of variance was used to partition total variability into components of variance in order to calculate intraclass correlation coefficients (ICCs). Results: The intrarater and interrater reliability of different shoulder movements varied widely. The movement of hand behind back and total shoulder flexion yielded the highest ICC scores for both intrarater reliability (0.91 and 0.83, respectively) and interrater reliability (0.80 and 0.72, respectively). Low ICC scores were found for the movements of glenohumeral abduction, external rotation in abduction, and internal rotation in abduction (intrarater ICCs 0.35, 0.43, and 0.32, respectively), and external rotation in neutral, external rotation in abduction, and internal rotation in abduction (interrater ICCs 0.29, 0.11, and 0.06, respectively). Conclusions: The measurement of shoulder movements using a standardised protocol by rheumatologists produced variable intrarater and interrater reliability. Reasonable reliability was obtained only for the movement of hand behind back and total shoulder flexion.
Resumo:
The aim of this study was to determine the effects of 7 weeks of high- and low-velocity resistance training on strength and sprint running performance in nine male elite junior sprint runners (age 19.0 +/- 1.4 years, best 100 m times 10.89 +/- 0.21 s; mean +/- s). The athletes continued their sprint training throughout the study, but their resistance training programme was replaced by one in which the movement velocities of hip extension and flexion, knee extension and flexion and squat exercises varied according to the loads lifted (i.e. 30-50% and 70-90% of 1-RM in the high- and low-velocity training groups, respectively). There were no between-group differences in hip flexion or extension torque produced at 1.05, 4.74 or 8.42 rad . s(-1), 20 m acceleration or 20 m 'flying' running times, or 1-RM squat lift strength either before or after training. This was despite significant improvements in 20 m acceleration time (P < 0.01), squat strength (P< 0.05), isokinetic hip flexion torque at 4.74 rad . s(-1) and hip extension torque at 1.05 and 4.74 rad . s(-1) for the athletes as a whole over the training period. Although velocity-specific strength adaptations have been shown to occur rapidly in untrained and non-concurrently training individuals, the present results suggest a lack of velocity-specific performance changes in elite concurrently training sprint runners performing a combination of traditional and semi-specific resistance training exercises.
Resumo:
Developments in computer and three dimensional (3D) digitiser technologies have made it possible to keep track of the broad range of data required to simulate an insect moving around or over the highly heterogeneous habitat of a plant's surface. Properties of plant parts vary within a complex canopy architecture, and insect damage can induce further changes that affect an animal's movements, development and likelihood of survival. Models of plant architectural development based on Lindenmayer systems (L-systems) serve as dynamic platforms for simulation of insect movement, providing ail explicit model of the developing 3D structure of a plant as well as allowing physiological processes associated with plant growth and responses to damage to be described and Simulated. Simple examples of the use of the L-system formalism to model insect movement, operating Lit different spatial scales-from insects foraging on an individual plant to insects flying around plants in a field-are presented. Such models can be used to explore questions about the consequences of changes in environmental architecture and configuration on host finding, exploitation and its population consequences. In effect this model is a 'virtual ecosystem' laboratory to address local as well as landscape-level questions pertinent to plant-insect interactions, taking plant architecture into account. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The black flying fox Pteropus alecto is one of four species of flying fox found on the Australian mainland. Little information exists about the specific behaviour of this species, and no framework for the study of its behaviour has yet been constructed. In the study reported here, two P alecto colonies were observed at two day roosts in South East Queensland, Australia, between 1998-2000. Observations focused on solitary and social actions in general and on mother-infant interactions in some detail and led to the construction of an ethogram that defines each action structurally and functionally, describing accompanying vocalisations where appropriate. Diurnal activity patterns of P. alecto throughout the year consisted predominantly of roosting, grooming and sleeping, and involved little social activity. Social interactions were largely restricted to the seasonal contexts of the birthing/rearing period of October to March and the subsequent courtship/mating season of February to April. In all, 74 behavioural units were defined with the aim of facilitating further research and the implementation of effective conservation strategies for the species.
Resumo:
Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective To identify nematodes seen in histological sections of brains of flying foxes (fruit bats) and describe the associated clinical disease and pathology. Proceedures Gross and histological examination of brains from 86 free-living flying foxes with neurological disease was done as part of an ongoing surveillance program for Australian bat lyssavirus. Worms were recovered, or if seen in histological sections, extracted by maceration of half the brain and identified by microscopic examination. Histological archives were also reviewed. Results There was histological evidence of angiostrongylosis in 16 of 86 recently submitted flying foxes with neurological disease and in one archival case from 1992. In 10 flying foxes, worms were definitively identified as Angiostrongylus cantonensis fifth-stage larvae. A worm fragment and third stage larvae were identified as Angiostrongylus sp, presumably A cantonensis, in a further three cases. The clinical picture was dominated by paresis, particularly of the hind-limbs, and depression, with flying foxes surviving up to 22 days in the care of wildlife volunteers. Brains containing fifth-stage larvae showed a moderate to severe eosinophilic and granulomatous meningoencephalitis (n = 14), whereas there was virtually no inflammation of the brains of bats which died when infected with only smaller, third-stage larvae (n = 3). There was no histological evidence of pulmonary involvement. Conclusion This is the first report of the recovery and identification of A cantonensis from free-living Australian wildlife. While anglostrongylosis is a common cause of paresis in flying foxes, the initial clinical course cannot be differentiated from Australian bat lyssavirus infection, and wildlife carers should be urged not to attempt to rehabilitate flying foxes with neurological disease.
Resumo:
Breast screening programmes have facilitated more conservative approaches to the surgical and radiotherapy management of women diagnosed with breast cancer. This study investigated changes in shoulder movement after surgery for primary, operable breast cancer to determine the effect of elective physiotherapy intervention. Sixty-five women were randomly assigned to either the treatment (TG) or control group (CG) and assessments were completed preoperatively, at day 5 and at 1 month, 3, 6, 12 and 24 months postoperatively. The CG only received an exercise instruction booklet in comparison to the TG who received the Physiotherapy Management Care Plan (PMCP). Analyses of variance revealed that abduction returned to preoperative levels more quickly in the TG than in the CG. The TG women had 14degrees more abduction at 3 months and 7degrees at 24 months. Functional recovery at 1 month was greater in those randomised to the TG, with a dominant operated arm (OA) or receiving breast-conserving surgery. However, it was not possible to predict recovery over the 2 years postoperatively on the basis of an individual woman's recovery at 1 month postoperatively. The eventual recovery of abduction or flexion range of movement was not related to the dominance of the OA nor to the surgical procedure performed. The PMCP provided in the early postoperative period is effective in facilitating and maintaining the recovery of shoulder movement over the first 2 years after breast cancer surgery.
Resumo:
Thirteen intubated, high dependency patients with neurological injuries were studied in order to investigate the short term respiratory effects of neurophysiological facilitation and passive movement on tidal volume (V-T), minute ventilation (V-E), respiratory rate (V-R) and oxygen saturation (SpO(2)). The subjects were studied under four conditions: no intervention (control) and during periods of neurophysiological facilitation, passive movement and sensory stimulation. All periods were standardised to three minutes duration and all parameters were recorded before and after each intervention. Neurophysiological facilitation produced significant increases (p < 0.01) in V-E and SpO(2) (p < 0.05) when compared with control values, with an overall mean increase in V-E of 14.6%. Similarly, passive movement increased V-E (p < 0.01) by an average of 9.8% and also increased SpO(2) (p < 0.01). In contrast, sensory stimulation produced significant increases (p < 0.01) in SpO(2) with control levels, with no significant change in V-T or V-E. There was no significant difference in V-R with all treatments. This study provides preliminary evidence of improved short term ventilatory function following neurophysiological facilitation, independent of generalised sensory stimulation, which has not been previously examined in the literature, supporting its use in the management of high dependency neurological patients.
Resumo:
An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.
Resumo:
Flying foxes are commonly thought of as highly social mammals, yet little is known about the dynamics of their social interactions at a day roost. The aim of the present study was to examine the nature of the seasonal activities of territoriality and courtship amongst wild flying foxes in Australia. Focal observations were conducted at two permanent roosts of black flying foxes Pteropus alecto during periods of peak social interaction in the summers of 1999 and 2000 in urban Brisbane, Queensland. Observations of male territoriality were conducted at dawn and began eight weeks prior to the commencement of mating. The majority of defense bouts (87%) consisted of ritualised pursuit, while 13% of bouts involved physical contact expressed as either wrestling or hooking. One male with an unusually large territory took significantly longer to defend it than other males with less territory to defend. Observations of courtship revealed repetitive courtship sequences, including pre-copulatory approaches by the males, copulation attempts and grooming/resting periods. Thirty-four complete courtship sequences incorporating 135 copulation attempts were recorded over two seasons. Females actively resisted courtship approaches by males, forcing males to display a continuous determination to mate over time where determination can be considered an indicator of 'fitness'. The courtship bout length of females with suckling young was significantly longer ((x) over bar +/- SE; 230.9 +/- 22.16 s) than that of females unencumbered by large pups (158.5 +/- 9.69 s), although the length of copulations within those courtships was not (45.6 +/- 5.19 versus 36.2 +/- 3.43 s).