227 resultados para Biotransformation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data concerning the 3-hydroxycineoles 1 and 2 are provided to enable the ready identification of these metabolites and to determine their enantiomeric excess in mixtures. An unusual S(N)2-type inversion at a tertiary center is observed during one synthetic approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric absorption of feruloylquinic acid and di-O-caffeoylquinic acid analogs has never been investigated despite their potential contribution to the proposed beneficial health effects leading to reduced risk of type 2 diabetes. Using a cultured gastric epithelial model, with an acidic apical pH, the relative permeability coefficients (P(app)) and metabolic fate of a series of chlorogenic acids (CGAs) were investigated. Mechanistic studies were performed in the apical to basal direction and demonstrated differential rates of absorption for different CGA subgroups. For the first time, we show intact absorption of feruloylquinic acids and caffeoylquinic acid lactones across the gastric epithelium (P(app) ~ 0.2 cm/s). Transport seemed to be mainly by passive diffusion, because good linearity was observed over the incubation period and test concentrations, and we speculate that a potential carrier-mediated component may be involved in uptake of certain 4-acyl CGA isomers. In contrast, absorption of intact di-O-caffeoylquinic acids was rapid (P(app) ~ 2-10 cm/s) but nonlinear with respect to time and concentration dependence, which was potentially limited by interaction with an efflux transporter and/or pH gradient dependence. For the first time, methylation is shown in gastric mucosa. Furthermore, isoferulic acid, dimethoxycinnamic acid, and ferulic acid were identified as novel gastric metabolites of CGA biotransformation. We propose that the stomach is the first location for the release of hydroxycinnamic acids, which could explain their early detection after coffee consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscarine was identified as an active principle of the poisonous mushroom Amanita muscaria over 170 years ago and has been identified as an agonist of acetylcholine. The synthesis of all stereoisomers of muscarine have been accomplished at this stage by chemical methods and the biological activity of these compounds tested. A number of synthetic routes to enantiomerically pure muscarine and its analogues have been published. In this work, we are focussed on the use of a novel biotransformation strategy to access these compounds. Asymmetric synthesis involves targeting a synthetic pathway leading to one enantiomer of a compound and biocatalysis is one strategy used in asymmetric synthesis. Chapter 1 consists of a review of the relevant literature pertaining to the synthesis and stereoselective transformations of 3-hydroxytetrahydrofuranss. A review of synthetic routes to these compounds is presented, with a particular focus on routes to the natural product muscarine and its analogues. Chapter 2 discusses the preparative routes to the 3-hydroxytetrahydrofurans via 3(2H)- furanones. Steps amongst which include Rh(II) mediate cyclisation and kinetic resolution via baker’s yeast mediated carbonyl reduction, resulting in enantioenriched 3- hydroxytetrahydrofuran derivatives. Finally, application of this methodology to the preparation of all four enantiomers of an analogue of desmethylmuscarine and the synthesis of epimuscarine is described. Chapter 3 consists of a detailed experimental section outlining the synthetic procedures employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated the concentrations and patterns of PBDEs and hydroxylated (OH) PBDE analogues in two ringed seal populations: less contaminated Svalbard and more contaminated Baltic Sea. Mean concentration of hepatic sum-PBDE, which was dominated by BDE47, was six times higher in the ringed seals from the Baltic Sea compared to the seals from Svalbard. BDE47/sum-PBDE was higher in the seals from Svalbard compared to that for Baltic seals, while the trend was opposite for BDE153 and 154. The geographical difference in contaminant pattern of PBDEs in ringed seals could be explained by biotransformation via oxidative metabolism and/or by dietary differences. OH-PBDEs were detectable in the majority of plasma samples from both locations, and dominated by bioaccumulation of naturally occurring congeners. Low levels of 3-OH-BDE47 and 4'-OH-BDE49 in the Baltic ringed seals suggested minor oxidative biotransformation of BDE47. In the Baltic seals, BDE153/sum-PBDEs and BDE154/sum-PBDEs increased and BDE28/sum-PBDE decreased with increasing sum-POP concentration, which suggests BDE153 and 154 are more persistent than BDE28. Contrasting diets of the ringed seals in these two locations may influence the PBDE congener pattern due to selective long-range transport and direct effluent emissions to Svalbard and the Baltic, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ocratoxina A é um composto formado a partir do metabolismo secundário de fungos dos gêneros Aspergillus e Penicillium. Uma vez que a presença dessa micotoxina nos alimentos causa sérios danos à saúde humana e animal, surge o interesse pelo desenvolvimento de métodos que visem a redução dos seus níveis em diferentes matrizes. Diversos processos de descontaminação têm sido propostos, sendo que os métodos de redução biológica tem recebido destaque. Esses métodos consistem na aplicação de micro-organismos ou de suas enzimas, o que gera a biotransformação ou degradação da toxina produzindo metabólitos com menor ou nenhuma toxicidade. Diante disso, o objetivo geral do trabalho foi avaliar o efeito da peroxidase na redução dos níveis de ocratoxina A. As enzimas peroxidases testadas foram a comercial e a obtida do farelo de arroz. Para a extração enzimática foram utilizadas as frações granulométricas do farelo de arroz de 48 a 100 mesh, sendo estas frações caracterizadas quimicamente. A peroxidase foi extraída do farelo de arroz em tampão 10 mM pH 5,0 e purificada por partição trifásica, obtendo 77,1% de recuperação e 9,2 para o fator de purificação. O método utilizado para a extração da ocratoxina A do sistema aquoso foi por partição líquido-líquido utilizando como solvente o clorofórmio, sendo esse método validado segundo os parâmetros de linearidade (0,1 a 20 ng mL-1), coeficientes de correlação (0,9997) e de determinação (0,9994), e limites de detecção (0,02) e quantificação (0,03). A afinidade entre as peroxidases e a ocratoxina A foi verificada segundo os parâmetros de KM e Vmáx, resultando em 0,00027 mM e 0,000015 mM min-1, respectivamente, para a peroxidase comercial, e 0,0065 mM e 0,000031 mM min-1 para a obtida do farelo de arroz. Com relação aos percentuais de redução de ocratoxina A, foram avaliadas 3 proporções enzima:substrato (1:10, 1:5 e 8:1 para a comercial e 1:10, 1:5 e a com atividade de 0,063 U mL-1 para a do farelo), sendo que as proporções que forneceram maior redução foi a de 8:1 para a enzima comercial (0,063 U mL-1) e a correspondente a 0,063 U mL-1 para a enzima obtida do farelo. Os percentuais de redução de ocratoxina A foram de 59% para a peroxidase comercial em 300 min e 41% para a peroxidase do farelo de arroz em 1440 min. O efeito de adsorção da ocratoxina A pela enzima peroxidase foi descartado uma vez que foi realizada a sua hidrólise com a enzima pepsina e verificado um percentual de 2,7% de adsorção, demonstrando que a redução foi por ação enzimática. A enzima obtida de farelo de arroz com atividade de 0,063 U mL-1 foi aplicada em suco de uva tinto e branco. Observou-se que para o primeiro não houve redução significativa, enquanto que para o segundo a redução foi de 17%. Neste trabalho, então, foi possível verificar a capacidade de redução dos níveis da ocratoxina A pela enzima peroxidase, tanto em sistema aquoso como no suco de uva integral branco.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As Microcistinas são heptapeptídios cíclicos produzidos como metabólitos secundários por diferentes espécies de cianobactérias, sendo relevantes pelo seu potencial hepatotóxico. Peixes apresentam estratégias bioquímicas para detoxificar contaminantes ambientais, incluindo a ativação de enzimas de fase II de biotransformação, que incluem as isoformas de glutationa S-transferase (GST). As GST catalizam a conjugação de glutationa reduzida (GSH) com uma variedade de xenobióticos, incluindo as microcistinas. O presente estudo avaliou os níveis transcricionais de quinze isoformas de GST a fim de identificar isoformas possivelmente envolvidas na detoxificação de contaminantes ambientais como a microcistina-LR (MC-LR) em Danio rerio. A técnica de PCR em tempo real (RT-qPCR) foi utilizada para avaliação dos níveis transcricionais, permitindo análise das GST em diferentes órgãos, abundância e a ativação/repressão das isoformas de GST pela exposição à MC-LR. Foram avaliados os possíveis efeitos causados em brânquia e fígado após exposição por 24 hs às concentrações de 5 µg.L-1 e 50 µg.L-1 de MC-LR. Baseado nos scores de estabilidade para oito genes normalizadores, foram selecionados glicose-6-fosfato desidrogenase (g6pdh), β-actina1 e beta-2-microglobulina (b2m); b2m, alfa-tubulina 1 (tuba) e β- actin1; e tuba, b2m e g6pdh, para normalização dos níveis trancricionais de GST para distribuição órgão-específica, abundância e efeito da MC-LR em brânquia e fígado, respectivamente. A avaliação transcricional da distribuição órgão-específica revelou níveis significativos de gstal e gstk1.1 no fígado; gstp1 e gstp2 em brânquia; mgst3a, gstr1, gstm2, gstm33, gstp1, gstp2 e gstk1.1 no intestino; gstm2, gstm3 e gstal no olho e gstt1a e gsta2.1 no cérebro. Considerando os níveis de transcritos para um dado órgão, gstk1.1, gstal, gstp1 e gstt2 foram mais abundantes nos órgãos de detoxificação, tais como o fígado, brânquias e intestino, enquanto gstt1a e gsta2.1 foram mais abundantes no rim. Em brânquia, gsta2.1 e gstt1b foram reprimidas por 5 µg.L-1 de MC-LR e mgst1.1 foi reprimida em 50 µg.L-1 de MC-LR. No fígado, as isoformas gst2.2 e gstp2 foram reprimidas em ambas as concentrações, gstal foi reprimida em 5 µg.L-1, e gstt1a e gstk1.1 foram reprimidas em 50 µg.L-1 de MC-LR. As isoformas gstal, gstr1, gstp1, mgst3a, gstm1, gstm2 e gstm3 não foram alteradas pela exposição a MC-LR. Os resultados obtidos fornecem informações para a escolha de isoformas específicas de GST possivelmente envolvidas na detoxificação/toxicidade de MC-LR, a serem melhores caracterizadas ao nível protéico e também contribui para a escolha de genes normalizadores a serem utilizados em outros estudos da mesma natureza