225 resultados para Biomes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haemosporidians are vector-transmitted intracellular parasites that occur in many bird species worldwide and may have important implications for wild bird populations. Surveys of haemosporidians have traditionally focused on Europe and North America, and only recently have they been carried out in the Neotropics, where the prevalence and impacts of the disease have been less studied and are not well understood. In this study we carried out a survey in the endemic bird area of the Sierra Nevada de Santa Marta (SNSM), an isolated coastal massif in northern Colombia that contains a large number of biomes and that is experiencing high rates of habitat loss. We sampled birds from 25 species at 2 different altitudes (1640 and 2100 m asl) and determined avian haemosporidian infection by polymerase chain reaction and sequencing a portion of the cytochrome b (cyt b) gene of the parasite. From the sampled birds, 32.1% were infected by at least 1 of 12 unique cyt b lineages of haemosporidian genera: Plasmodium, Leucocytozoon, Haemoproteus, and subgenus Parahaemoproteus. We found a higher prevalence of avian haemosporidians at low altitudes (1640 m asl). All endemic bird species we sampled had at least one individual infected with avian haemosporidians. We also found evidence of higher overall prevalence among endemic rather than nonendemic birds, suggesting higher susceptibility in endemic birds. Overall, our findings suggest a high haemosporidian species richness in the bird community of the SNSM. Considering the rate of habitat loss that this area is experiencing, it is important to understand how avian haemosporidians affect bird populations; furthermore, more exhaustive sampling is required to fully comprehend the extent of avian haemosporidian infection in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen-isotope records from Greenland ice cores indicate numerous rapid climate fluctuations during the last glacial period. North Atlantic marine sediment cores show comparable variability in sea surface temperature and the deposition of icerafted debris. In contrast, very few continental records of this time period provide the temporal resolution and environmental sensitivity necessary to reveal the extent and effects of these environmental fluctuations on the continents. Here we present high-resolution geochemical, physical and pollen data from lake sediments in Italy and from a Mediterranean sediment core, linked by a common tephrochronology. Our lacustrine sequence extends to the past 102,000 years. Many of its features correlate well with the Greenland ice-core records, demonstrating that the closely coupled ocean-atmosphere system of the Northern Hemisphere during the last glacial extended its influence at least as far as the central Mediterranean region. Numerous vegetation changes were rapid, frequently occurring in less than 200 years, showing that the terrestrial biosphere participated fully in lastglacial climate variability. Earlier than 65,000 years ago, our record shows more climate fluctuations than are apparent in the Greenland ice cores. Together, the multi-proxy data from the continental and marine records reveal differences in the seasonal character of climate during successive interstadials, and provide a step towards determining the underlying mechanisms of the centennial-millennial-scale variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southeastern coast of South Australia contains a spectacular and world-renown suite of Quaternary calcareous aeolianites. This study is focused on the provenance of components in the Holocene sector of this carbonate breach-dune succession. Research was carried out along seven transects from ~30 meters water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Otway coasts in particular are mostly composed of modern invertebrate and calcareous algal allochems. The most numerous grains are from molluscs, benthic foraminifera, coralline algae, echinoids, and bryozoans. These particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows, and low-relief seafloor rockgrounds. The incorporation of carbonate skeletons into coastal dunes, however, depends on a combination of; 1) the infauna within intertidal and nearshore environments, 2) the physical characteristics of different allochems and their ability to withstand fragmentation and abrasion, 3) the wave and swell climate, and 4) the nature of aeolian transport. Most aeolian dune sediment is derived from nearshore and intertidal carbonate factories. This is particularly well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in water depths > 10mwd. Thus, the calcareous aeolianites in this cool-water carbonate region are not a reflection of the offshore marine shelf factories, but more a product of shallow nearshore-intertidal biomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over time, humanity began to realize the negative impact that the modern world has caused to the environment. The Atlantic Forest is one of the richest biomes in biodiversity, covering more than 60% of all species on the planet. This biome covered about 15% of the Brazilian territory, leaving currently only 7% of its fully fragmented forest remnants. This was the biome that suffered most from modernization and strong anthropogenic pressures in Brazil. For the account of environmental degradation, in the second half of the nineteenth century there was a shift in thinking, giving greater emphasis on conservation of some natural landscapes, with the intention of removing the man still preserved nature. Based on American models of conservation there were created the Nature Conservation Units. This study aimed to analyze the environmental quality of the State Park Vitório Piassa, a Conservation Unit located in the city of Pato Branco - PR. The environmental quality was measured by use of bio-indicators and some environmental pressures that the Park has suffered over the years also were identified. Beetles of the familiy Scarabaeinae (Coleoptera: Scarabaeidae) were used as the bioindicators. To compare the most conserved areas and the most degraded areas of the Park, three specific sites were defined within the Atlantic Forest fragment, these insects were captured with pitfall traps and identified as to their species and genera. There were two collections in February and March 2015, which resulted in 945 individuals in 22 species and nine different genus. Then the population of beetles in each area were classified based on ecological measures such as species richness, abundance of individuals of each species through diversity index (Shannon and Simpson) to identify the differences between the sampled groups and equitability (Pielou) to measure the distribution of the total abundance of the species in each area. To meet the objective of identifying the environmental pressures that occur in PEVP, evidence were collected through photographs, watching the field, aerial images and conversations with the resident population in the park. Similarly, if made relevant to build on the project running by the municipality for the construction of infrastructure for public viewing. These data served as subsidies to confront the current situation of the park and the current Brazilian legislation for UC's of full protection, highlighting the existing socio-environmental conflicts in the park, involving political issues and the proximity of the Conservation Unit with the urban area of the city.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microorganisms play very important roles in maintaining ecosystems, which explains the enormous interest in understanding the relationship between these organisms as well as between them and the environment. It is estimated that the total number of prokaryotic cells on Earth is between 4 and 6 x 1030, constituting an enormous biological and genetic pool to be explored. Although currently only 1% of all this wealth can be cultivated by standard laboratory techniques, metagenomic tools allow access to the genomic potential of environmental samples in a independent culture manner, and in combination with third generation sequencing technologies, the samples coverage become even greater. Soils, in particular, are the major reservoirs of this diversity, and many important environments around us, as the Brazilian biomes Caatinga and Atlantic Forest, are poorly studied. Thus, the genetic material from environmental soil samples of Caatinga and Atlantic Forest biomes were extracted by direct techniques, pyrosequenced, and the sequences generated were analyzed by bioinformatics programs (MEGAN MG-RAST and WEBCarma). Taxonomic comparative profiles of the samples showed that the phyla Proteobacteria, Actinobacteria, Acidobacteria and Planctomycetes were the most representative. In addition, fungi of the phylum Ascomycota were identified predominantly in the soil sample from the Atlantic Forest. Metabolic profiles showed that despite the existence of environmental differences, sequences from both samples were similarly placed in the various functional subsystems, indicating no specific habitat functions. This work, a pioneer in taxonomic and metabolic comparative analysis of soil samples from Brazilian biomes, contributes to the knowledge of these complex environmental systems, so far little explored

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El estudio de los factores que rigen los patrones espaciales de la distribución del pastoreo de los herbívoros domésticos es fundamental en la ecología y el manejo de los recursos naturales. Aunque los productores y profesionales realizan ajustes anuales o estacionales de la carga animal para influir en la preferencia animal por determinados ambientes de pastoreo y alcanzar un uso eficiente del recurso forrajero, el manejo de la distribución del ganado continúa siendo un gran desafío. La heterogeneidad de los ambientes de pastoreo tiene dimensión tanto espacial como temporal, lo cual impone desafíos en el entendimiento de los factores que influyen en las decisiones de selección de hábitat por parte del ganado. En esta contribución comenzamos revisando los modelos conceptuales actuales del comportamiento del ganado a grandes escalas. Luego, presentamos algunos resultados de estudios conducidos en diferentes ecosistemas contrastantes de Argentina y New Mexico (EEUU). Estos estudios desarrollados usando animales con y sin collares GPS contribuyen a mejorar gradualmente las decisiones de manejo de los pastizales. Finalmente, hacemos unas consideraciones breves relacionadas con el manejo del ganado en Ecuador que pueden contribuir a mejorar la sustentabilidad de los sistemas de producción ganaderos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doutoramento em Engenharia Florestal - Instituto Superior de Agronomia - UL

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The starting point for this study was the consideration of future climate change scenarios and their uncertainties. The paper presents the global projections from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and compares them with regional scenarios (downscaling) developed by the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais - INPE), with a focus on two main IPCC scenarios (RCP4.5 and RCP8.5) and two main global models (MIROC and Hadley Centre) for the periods 2011-2040 and 2041-2070. It aims to identify the main trends in terms of changes in temperature and precipitation for the North and Northeast regions of Brazil (more specifically, in the Amazon, semi-arid and cerrado biomes).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reforestation is an important tool for reducing or reversing biodiversity loss and mitigating climate change. However, there are many potential compromises between the structural (biodiversity) and functional (carbon sequestration and water yield) effects of reforestation, which can be affected by decisions on spatial design and establishment of plantings. We review the environmental responses to reforestation and show that manipulating the configuration of plantings (location, size, species mix and tree density) increases a range of environmental benefits. More extensive tree plantings (>10. ha) provide more habitat, and greater improvements to carbon and water cycling. Planting a mixture of native trees and shrubs is best for biodiversity, while traditional plantation species, generally non-native species, sequester C faster. Tree density can be manipulated at planting or during early development to accelerate structural maturity and to manage water yields. A diversity of habitats will be created by planting in a variety of landscape positions and by emulating the patchy distribution of forest types, which characterized many regions prior to extensive landscape transformation. Areas with shallow aquifers can be planted to reduce water pollution or avoided to maintain water yields. Reforestation should be used to build forest networks that are surrounded by low-intensity land use and that provide links within regions and between biomes. While there are adequate models for C sequestration and changes in water yields after reforestation, the quantitative understanding of changes in habitat resources and species composition is more limited. Development of spatial and temporal modelling platforms based on empirical models of structural and functional outcomes of reforestation is essential for deciding how to reconfigure agricultural regions. To build such platforms, we must quantify: (a) the influence of previous land uses, establishment methods, species mixes and interactions with adjacent land uses on environmental (particularly biodiversity) outcomes of reforestation and (b) the ways in which responses measured at the level of individual plantings scale up to watersheds and regions. Models based on this information will help widespread reforestation for carbon sequestration to improve native biodiversity, nutrient cycling and water balance at regional scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Waterfowl can exploit distant ephemeral wetlands in arid environments and provide valuable insights into the response of birds to rapid environmental change, and behavioural flexibility of avian movements. Currently much of our understanding of behavioural flexibility of avian movement comes from studies of migration in seasonally predictable biomes in the northern hemisphere. We used GPS transmitters to track 20 Pacific black duck (Anas superciliosa) in arid central Australia. We exploited La Niña conditions that brought extensive flooding, so allowing a rare opportunity to investigate how weather and other environmental factors predict initiation of long distance movement toward freshly flooded habitats. We employed behavioural change point analysis to identify three phases of movement: sedentary, exploratory and long distance oriented movement. We then used random forest models to determine the ability of meteorological and remote sensed landscape variables to predict initiation of these phases. RESULTS: We found that initiation of exploratory movement phases is influenced by fluctuations in local weather conditions and accumulated rainfall in the landscape. Initiation of long distance movement phases was found to be highly individualistic with minor influence from local weather conditions. CONCLUSIONS: Our study reveals how individuals utilise local conditions to respond to changes in resource distribution at broad scales. Our findings suggest that individual movement decisions of dispersive birds are informed by the integration of multiple weather cues operating at different temporal and spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.