969 resultados para BioArray Software Environment
Resumo:
One of the objectives of the European Higher Education Area is the promotion of collaborative and informal learning through the implementation of educational practices. 3D virtual environments become an ideal space for such activities. On the other hand, the problem of financing in Spanish universities has led to the search for new ways to optimize available resources. The Technical University of Madrid requires the use of laboratories which due to their dangerousness, duration or control of the developed processes are difficult to perform in real life. For this reason, we have developed several 3D laboratories in virtual environment. The laboratories are built on open source platform OpenSim. In this paper it is exposed the use of the OpenSim platform for these new teaching experiences and the new design of the software architecture. This architecture requires the adaptation of the platform to the needs of the users and the different laboratories of our University. We will explain the structure of the implemented architecture and the process of creating and configuring it. The proposed architecture is decentralized, each laboratory is housed in different an educational center. The architecture adds several services, among others, the creation and management of users automated, communication between external services and platforms in different program languages. Therefore, we achieve improving the user experience and rising the functionalities of laboratories.
Resumo:
Comprender y estimular la motivación resulta crucial para favorecer el rendimiento de los estudiantes universitarios y profesionales de diversos ámbitos de conocimiento, como el de la Ingeniería del Software. Actualmente, este sector está demandando soluciones científico-tecnológicas para trabajar de una manera práctica y sistemática sobre elementos motivacionales como la satisfacción por el estudio y el trabajo, el aprendizaje activo o las relaciones interpersonales. El objetivo de esta Tesis Doctoral es definir y validar soluciones para evaluar y mejorar la motivación de los estudiantes y profesionales en Ingeniería del Software. Para ello, se han creado instrumentos, metodologías y tecnologías que se han aplicado con un total de 152 estudiantes y 166 profesionales. Esta experiencia empírica ha servido para mejorar de manera continua dichas aportaciones, así como para comprobar en un entorno real su validez y utilidad. Los datos recogidos revelan que las soluciones provistas han resultado eficaces para comprender y estimular la motivación tanto en el ámbito académico como en el profesional. Además, a raíz de los datos recogidos se han podido explorar aspectos de interés sobre las características y particularidades motivacionales asociadas a la Ingeniería del Software. Por tanto, esta Tesis Doctoral resulta de interés para las universidades y empresas de este sector sensibilizadas con el desarrollo motivacional de sus estudiantes y trabajadores. Abstract It is crucial to understand and encourage the motivation of students and professionals in order to enhance their performance. This applies to students and professionals from diverse fields such as Software Engineering. Currently this sector is demanding scientific–technological solutions to work on motivational elements in a pragmatic and systematic way. Such elements are among others study and work satisfaction, active learning or interpersonal relationships. This Doctoral Thesis objective is to establish and validate solutions to evaluate and improve the motivation in the Software Engineering field. To achieve this goal, resources, methods and technologies have been created. They have been applied to 152 students and 166 professionals. This empirical experience served to, on one hand, enhance in a continuous way the provided contributions, and on the other hand, to test in a real environment their validity and utility. The collected data reveal that the provided solutions were effective to understand and encourage motivation both in the academic and in the professional area. In addition, the collected data enable to examine interesting aspects and motivational special features associated with Software Engineering. Therefore this Doctoral Thesis is relevant to universities and firms from this field which are aware of the significance of the motivational development of their students and employees.
Resumo:
This article presents a case study about the TSPi benefits in a software project under a Small Settings environment. An adapted process based on the TSPi was defined. The pilot project had a schedule and budget restricted. The process began collecting historical projects data in order to get a measure repository. The project was launched defining the following goals: increase the productivity, reduce the test time and improve the product quality. Finally, the results were analysed and the goals were verified.
Resumo:
La Ingeniería de Pruebas está especializada en la verificación y validación del Software,y formalmente se define como: “Proceso de desarrollo que emplea métodos rigurosos para evaluar la corrección y calidad del producto a lo largo de todo su ciclo de vida” [3]. Este proceso comprende un conjunto de métodos, procedimientos y técnicas formalmente definidas las cuales, usadas de forma sistemática, facilitan la identificación de la mayor cantidad de errores y fallos posibles de un software. Un software que pase un proceso riguroso de pruebas es un producto de calidad que seguramente facilitará la labor del Ingeniero de Software en la corrección de futuras incidencias, algunas de ellas generadas tras la implantación en el entorno real. Este proceso constituye un área de la Ingeniería del Software y una especialidad por tanto, de la misma. De forma simple, la consecución de una correcta Verificación y Validación del Software requiere de algunas actividades imprescindibles como: - Realizar un plan de pruebas del proyecto. - Actualizar dicho plan y corregirlo en caso necesario. - Revisar los documentos de análisis de requisitos. - Ejecutar las pruebas en las diferentes fases del desarrollo del proyecto. - Documentar el diseño y la ejecución de las pruebas. - Generar documentos con los resultados y anomalías de las pruebas ya ejecutadas. Actualmente, la Ingeniería de Pruebas no es muy reconocida como área de trabajo independiente sino más bien, un área inmersa dentro de la Ingeniería de Software. En el entorno laboral existe el perfil de Ingeniero de Pruebas, sin embargo pocos ingenieros de software tienen claro querer ser Ingenieros de Pruebas (probadores o testers) debido a que nunca han tenido la oportunidad de enfrentarse a actividades prácticas reales dentro de los centros de estudios universitarios donde cursan la carrera. Al ser un área de inherente ejercicio profesional, la parte correspondiente de la Ingeniería de Pruebas suele enfocarse desde un punto de vista teórico más que práctico. Hay muchas herramientas para la creación de pruebas y de ayuda para los ingenieros de pruebas, pero la mayoría son de pago o hechas a medida para grandes empresas que necesitan dicho software. Normalmente la gente conoce lo que es la Ingeniería de Pruebas únicamente cuando se empieza a adquirir experiencia en dicha área en el ejercicio profesional dentro de una empresa. Con lo cual, el acercamiento durante la carrera no necesariamente le ha ofrecido al profesional en Ingeniería, la oportunidad de trabajar en esta rama de la Ingeniería del Software y en algunos casos, NOVATests: Metodología y herramienta software de apoyo para los Ingenieros de Prueba Junior 4 los recién egresados comienzan su vida profesional con algún desconocimiento en este sentido. Es por el conjunto de estas razones, que mi intención en este proyecto es proponer una metodología y una herramienta software de apoyo a dicha metodología, para que los estudiantes de carreras de Ingeniería Software y afines, e ingenieros recién egresados con poca experiencia o ninguna en esta área (Ingenieros de Pruebas Junior), puedan poner en práctica las actividades de la Ingeniería de Pruebas dentro de un entorno lo más cercano posible al ejercicio de la labor profesional. De esta forma, podrían desarrollar las tareas propias de dicha área de una manera fácil e intuitiva, favoreciendo un mayor conocimiento y experiencia de la misma. ABSTRACT The software engineering is specialized in the verification and validation of Software and it is formally defined as: “Development process which by strict methods evaluates and corrects the quality of the product along its lifecycle”. This process contains a number of methods, procedures and techniques formally defined which used systematically make easier the identification of the highest quantity of error and failures within a Software. A software going through this rigorous process of tests will become a quality product that will help the software engineer`s work while correcting incidences. Some of them probably generated after the deployment in a real environment. This process belongs to the Software engineering and therefore it is a specialization itself. Simplifying, the correct verification and validation of a software requires some essential activities such as: -Create a Test Plan of the project - Update this Test Plan and correct if necessary - Check Requirement’s specification documents -Execute the different tests among all the phases of the project - Create the pertinent documentation about design and execution of these tests. - Generate the result documents and all the possible incidences the tests could contain. Currently, the Test engineering is not recognized as a work area but an area immerse within the Software engineering. The professional environment includes the role of Test engineer, but only a few software engineers have clear to become Test engineers (testers) because they have never had the chance to face this activities within the university study centers where they take study of this degree. Since there are little professional environments, this area is focused from a theoretical way instead of a more practical vision. There are plenty of tools helping the Test engineer, but most of them are paid tools or bespoke tools for big companies in need of this software. Usually people know what test engineering is by starting working on it and not before, when people start acquiring experience in this field within a company. Therefore, the degree studied have not approach this field of the Software engineering before and in some cases the graduated students start working without any knowledge in this area. Because of this reasons explained, it is my intention to propose this Project: a methodology and a software tool supporting this methodology so the students of software engineering and similar ones but also graduated students with little experience in this area (Junior Test Engineers), can afford practice in this field and get used to the activities related with the test engineering. Because of this they will be able to carry out the proper tasks of this area easier, enforcing higher and better knowledge and experience of it.
Resumo:
Las metodologías de desarrollo ágiles han sufrido un gran auge en entornos industriales durante los últimos años debido a la rapidez y fiabilidad de los procesos de desarrollo que proponen. La filosofía DevOps y específicamente las metodologías derivadas de ella como Continuous Delivery o Continuous Deployment promueven la gestión completamente automatizada del ciclo de vida de las aplicaciones, desde el código fuente a las aplicaciones ejecutándose en entornos de producción. La automatización se ve como un medio para producir procesos repetibles, fiables y rápidos. Sin embargo, no todas las partes de las metodologías Continuous están completamente automatizadas. En particular, la gestión de la configuración de los parámetros de ejecución es un problema que ha sido acrecentado por la elasticidad y escalabilidad que proporcionan las tecnologías de computación en la nube. La mayoría de las herramientas de despliegue actuales pueden automatizar el despliegue de la configuración de parámetros de ejecución, pero no ofrecen soporte a la hora de fijar esos parámetros o de validar los ficheros que despliegan, principalmente debido al gran abanico de opciones de configuración y el hecho de que el valor de muchos de esos parámetros es fijado en base a preferencias expresadas por el usuario. Esto hecho hace que pueda parecer que cualquier solución al problema debe estar ajustada a una aplicación específica en lugar de ofrecer una solución general. Con el objetivo de solucionar este problema, propongo un modelo de configuración que puede ser inferido a partir de instancias de configuración existentes y que puede reflejar las preferencias de los usuarios para ser usado para facilitar los procesos de configuración. El modelo de configuración puede ser usado como la base de un proceso de configuración interactivo capaz de guiar a un operador humano a través de la configuración de una aplicación para su despliegue en un entorno determinado o para detectar cambios de configuración automáticamente y producir una configuración válida que se ajuste a esos cambios. Además, el modelo de configuración debería ser gestionado como si se tratase de cualquier otro artefacto software y debería ser incorporado a las prácticas de gestión habituales. Por eso también propongo un modelo de gestión de servicios que incluya información relativa a la configuración de parámetros de ejecución y que además es capaz de describir y gestionar propuestas arquitectónicas actuales tales como los arquitecturas de microservicios. ABSTRACT Agile development methodologies have risen in popularity within the industry in recent years due to the speed and reliability of the processes they propose. The DevOps philosophy and specifically the methodologies derived from it such as Continuous Delivery and Continuous Deployment push for a totally automated management of the application lifecycle, from the source code to the software running in production environment. Automation in this regard is used as a means to produce repeatable, reliable and fast processes. However, not all parts of the Continuous methodologies are completely automatized. In particular, management of runtime parameter configuration is a problem that has increased its impact in deployment process due to the scalability and elasticity provided by cloud technologies. Most deployment tools nowadays can automate the deployment of runtime parameter configuration, but they offer no support for parameter setting o configuration validation, as the range of different configuration options and the fact that the value of many of those parameters is based on user preference seems to imply that any solution to the problem will have to be tailored to a specific application. With the aim to solve this problem I propose a configuration model that can be inferred from existing configurations and reflect user preferences in order to ease the configuration process. The configuration model can be used as the base of an interactive configuration process capable of guiding a human operator through the configuration of an application for its deployment in a specific environment or to automatically detect configuration changes and produce valid runtime parameter configurations that take into account those changes. Additionally, the configuration model should be managed as any other software artefact and should be incorporated into current management practices. I also propose a service management model that includes the configuration information and that is able to describe and manage current architectural practices such as the microservices architecture.
Resumo:
Hoy en día, existen numerosos sistemas (financieros, fabricación industrial, infraestructura de servicios básicos, etc.) que son dependientes del software. Según la definición de Ingeniería del Software realizada por I. Sommerville, “la Ingeniería del Software es una disciplina de la ingeniería que comprende todos los aspectos de la producción de software desde las etapas iniciales de la especificación del sistema, hasta el mantenimiento de éste después de que se utiliza.” “La ingeniería del software no sólo comprende los procesos técnicos del desarrollo de software, sino también actividades tales como la gestión de proyectos de software y el desarrollo de herramientas, métodos y teorías de apoyo a la producción de software.” Los modelos de proceso de desarrollo software determinan una serie de pautas para poder desarrollar con éxito un proyecto de desarrollo software. Desde que surgieran estos modelos de proceso, se investigado en nuevas maneras de poder gestionar un proyecto y producir software de calidad. En primer lugar surgieron las metodologías pesadas o tradicionales, pero con el avance del tiempo y la tecnología, surgieron unas nuevas llamadas metodologías ágiles. En el marco de las metodologías ágiles cabe destacar una determinada práctica, la integración continua. Esta práctica surgió de la mano de Martin Fowler, con el objetivo de facilitar el trabajo en grupo y automatizar las tareas de integración. La integración continua se basa en la construcción automática de proyectos con una frecuencia alta, promoviendo la detección de errores en un momento temprano para poder dar prioridad a corregir dichos errores. Sin embargo, una de las claves del éxito en el desarrollo de cualquier proyecto software consiste en utilizar un entorno de trabajo que facilite, sistematice y ayude a aplicar un proceso de desarrollo de una forma eficiente. Este Proyecto Fin de Grado (PFG) tiene por objetivo el análisis de distintas herramientas para configurar un entorno de trabajo que permita desarrollar proyectos aplicando metodologías ágiles e integración continua de una forma fácil y eficiente. Una vez analizadas dichas herramientas, se ha propuesto y configurado un entorno de trabajo para su puesta en marcha y uso. Una característica a destacar de este PFG es que las herramientas analizadas comparten una cualidad común y de alto valor, son herramientas open-source. El entorno de trabajo propuesto en este PFG presenta una arquitectura cliente-servidor, dado que la mayoría de proyectos software se desarrollan en equipo, de tal forma que el servidor proporciona a los distintos clientes/desarrolladores acceso al conjunto de herramientas que constituyen el entorno de trabajo. La parte servidora del entorno propuesto proporciona soporte a la integración continua mediante herramientas de control de versiones, de gestión de historias de usuario, de análisis de métricas de software, y de automatización de la construcción de software. La configuración del cliente únicamente requiere de un entorno de desarrollo integrado (IDE) que soporte el lenguaje de programación Java y conexión con el servidor. ABSTRACT Nowadays, numerous systems (financial, industrial production, basic services infrastructure, etc.) depend on software. According to the Software Engineering definition made by I.Sommerville, “Software engineering is an engineering discipline that is concerned with all aspects of software production from the early stages of system specification through to maintaining the system after it has gone into use.” “Software engineering is not just concerned with the technical processes of software development. It also includes activities such as software project management and the development of tools, methods, and theories to support software production.” Software development process models determine a set of guidelines to successfully develop a software development project. Since these process models emerged, new ways of managing a project and producing software with quality have been investigated. First, the so-called heavy or traditional methodologies appeared, but with the time and the technological improvements, new methodologies emerged: the so-called agile methodologies. Agile methodologies promote, among other practices, continuous integration. This practice was coined by Martin Fowler and aims to make teamwork easier as well as automate integration tasks. Nevertheless, one of the keys to success in software projects is to use a framework that facilitates, systematize, and help to deploy a development process in an efficient way. This Final Degree Project (FDP) aims to analyze different tools to configure a framework that enables to develop projects by applying agile methodologies and continuous integration in an easy and efficient way. Once tools are analyzed, a framework has been proposed and configured. One of the main features of this FDP is that the tools under analysis share a common and high-valued characteristic: they are open-source. The proposed framework presents a client-server architecture, as most of the projects are developed by a team. In this way, the server provides access the clients/developers to the tools that comprise the framework. The server provides continuous integration through a set of tools for control management, user stories management, software quality management, and software construction automatization. The client configuration only requires a Java integrated development environment and network connection to the server.
Resumo:
Este trabalho analisa os principais métodos ágeis utilizados em empresas startup, como scrum, extreme programming, kanban e lean, isolando suas práticas e mapeando-as no Kernel do SEMAT para escolher os elementos essenciais da engenharia de software que estão relacionados a cada prática de forma independente. Foram identificadas 34 práticas que foram reduzidas a um conjunto de 26 pelas similaridades. Um questionário foi desenvolvido e aplicado no ambiente de startups de software para a avaliação do grau de utilização de cada determinada prática. Através das respostas obtidas foi possível a identificação de um subconjunto de práticas com utilização acima de 60% onde todos os elementos essenciais da engenharia de software são atendidos, formando um conjunto mínimo de práticas capazes de sustentar este tipo específico de ambiente.
Resumo:
One of the most important tenets of e-learning is that it bridges work and learning. A great e-learning experience brings learning into the work environment. This is a key point, the capacity to construct a work environment when the student can develop proper tasks to complete the learning process. This paper describes a work environment based on the development of two tools, an exercises editor and an exercises viewer. Both tools are able to manage color images where, because of the implementation of basic steganographic techniques, it is possible to add information, exercises, questions, and so on. The exercises editor allows to decide which information must be visible or remain hidden to the user, when the image is loaded in the exercises viewer. Therefore, it is possible to hide the solutions of the proposed tasks; this is very useful to complete a self-evaluation learning process. These tools constitute a learning architecture with the final objective that learners can apply and practice new concepts or skills.
Resumo:
The growing demand for physical rehabilitation processes can result in the rising of costs and waiting lists, becoming a threat to healthcare services’ sustainability. Telerehabilitation solutions can help in this issue by discharging patients from points of care while improving their adherence to treatment. Sensing devices are used to collect data so that the physiotherapists can monitor and evaluate the patients’ activity in the scheduled sessions. This paper presents a software platform that aims to meet the needs of the rehabilitation experts and the patients along a physical rehabilitation plan, allowing its use in outpatient scenarios. It is meant to be low-cost and easy-to-use, improving patients and experts experience. We show the satisfactory results already obtained from its use, in terms of the accuracy evaluating the exercises, and the degree of users’ acceptance. We conclude that this platform is suitable and technically feasible to carry out rehabilitation plans outside the point of care.
Resumo:
Context: Today’s project managers have a myriad of methods to choose from for the development of software applications. However, they lack empirical data about the character of these methods in terms of usefulness, ease of use or compatibility, all of these being relevant variables to assess the developer’s intention to use them. Objective: To compare three methods, each following a different paradigm (Model-Driven, Model-Based and Code-Centric) with respect to their adoption potential by junior software developers engaged in the development of the business layer of a Web 2.0 application. Method: We have conducted a quasi-experiment with 26 graduate students of the University of Alicante. The application developed was a Social Network, which was organized around a fixed set of modules. Three of them, similar in complexity, were used for the experiment. Subjects were asked to use a different method for each module, and then to answer a questionnaire that gathered their perceptions during such use. Results: The results show that the Model-Driven method is regarded as the most useful, although it is also considered the least compatible with previous developers’ experiences. They also show that junior software developers feel comfortable with the use of models, and that they are likely to use them if the models are accompanied by a Model-Driven development environment. Conclusions: Despite their relatively low level of compatibility, Model-Driven development methods seem to show a great potential for adoption. That said, however, further experimentation is needed to make it possible to generalize the results to a different population, different methods, other languages and tools, different domains or different application sizes.
Resumo:
Background: The Clinical Learning Environment, Supervision and Nurse Teacher scale is a reliable and valid instrument to evaluate the quality of the clinical learning process in international nursing education contexts. Objectives: This paper reports the development and psychometric testing of the Spanish version of the Clinical Learning Environment, Supervision and Nurse Teacher scale. Design: Cross-sectional validation study of the scale. Setting: 10 public and private hospitals in the Alicante area, and the Faculty of Health Sciences (University of Alicante, Spain). Participants: 370 student nurses on clinical placement (January 2011–March 2012). Methods: The Clinical Learning Environment, Supervision and Nurse Teacher scale was translated using the modified direct translation method. Statistical analyses were performed using PASW Statistics 18 and AMOS 18.0.0 software. A multivariate analysis was conducted in order to assess construct validity. Cronbach’s alpha coefficient was used to evaluate instrument reliability. Results: An exploratory factorial analysis identified the five dimensions from the original version, and explained 66.4% of the variance. Confirmatory factor analysis supported the factor structure of the Spanish version of the instrument. Cronbach’s alpha coefficient for the scale was .95, ranging from .80 to .97 for the subscales. Conclusion: This version of the Clinical Learning Environment, Supervision and Nurse Teacher scale instrument showed acceptable psychometric properties for use as an assessment scale in Spanish-speaking countries.
Resumo:
Relatório de estágio apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Sistemas de Informação Organizacionais
Resumo:
In this paper, technology is described as involving processes whereby resources are utilised to satisfy human needs or to take advantage of opportunities, to develop practical solutions to problems. This study, set within one type of technology context, information technology, investigated how, through a one semester undergraduate university course, elements of technological processes were made explicit to students. While it was acknowledged in the development and implementation of this course that students needed to learn technical skills, technological skills and knowledge, including design, were seen as vital also, to enable students to think about information technology from a perspective that was not confined and limited to 'technology as hardware and software'. This paper describes how the course, set within a three year program of study, was aimed at helping students to develop their thinking and their knowledge about design processes in an explicit way. An interpretive research approach was used and data sources included a repertory grid 'survey'; student interviews; video recordings of classroom interactions, audio recordings of lectures, observations of classroom interactions made by researchers; and artefacts which included students' journals and portfolios. The development of students' knowledge about design practices is discussed and reflections upon student knowledge development in conjunction with their learning experiences are made. Implications for ensuring explicitness of design practice within information technology contexts are presented, and the need to identify what constitutes design knowledge is argued.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.