947 resultados para Bio-inspired optimization techniques
Resumo:
Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
Nowadays there is great interest in structural damage detection in systems using nondestructive tests. Once the failure is detected, as for instance a crack, it is possible to take providences. There are several different approaches that can be used to obtain information about the existence, location and extension of the fault in the system by non-destructive tests. Among these methodologies, one can mention different optimization techniques, as for instance classical methods, genetic algorithms, neural networks, etc. Most of these techniques, which are based on element-byelement adjustments of a finite element (FE) model, take advantage of the dynamic behavior of the model. However, in practical situations, usually, is almost impossible to obtain an accuracy model. In this paper, it is proposed an experimental technique for damage location. This technique is based on H: norm to obtain the damage location. The dynamic properties of the structure were identified using experimental data by eigensystem realization algorithm (ERA). The experimental test was carried out in a beam structure through varying the mass of an element. For the output signal was used a piezoelectric sensor. The signal of input of sine form was generated through SignalCalc® software.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.
Resumo:
Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.
Resumo:
The problem of reconfiguration of distribution systems considering the presence of distributed generation is modeled as a mixed-integer linear programming (MILP) problem in this paper. The demands of the electric distribution system are modeled through linear approximations in terms of real and imaginary parts of the voltage, taking into account typical operating conditions of the electric distribution system. The use of an MILP formulation has the following benefits: (a) a robust mathematical model that is equivalent to the mixed-integer non-linear programming model; (b) an efficient computational behavior with exiting MILP solvers; and (c) guarantees convergence to optimality using classical optimization techniques. Results from one test system and two real systems show the excellent performance of the proposed methodology compared with conventional methods. © 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste trabalho é a otimização da largura de banda de antenas linear e planar para aplicações em sistemas de banda larga. Nesse sentido, foi feito um estudo das técnicas de análise, aumento da largura de banda e otimização adequadas para o problema em questão. Como técnica de análise, foi utilizado o método dos momentos, o qual está apresentado no capítulo II. Para aumentar a largura de banda, foram utilizadas as técnicas de colocação de elementos parasitas e construção de fendas no radiador, descritos sucintamente no capítulo III. Como algoritmo de otimização, foi utilizado o algoritmo genético, descrito sucintamente no capítulo II. Neste trabalho, são apresentadas duas propostas de antenas, uma antena dipolo linear combinada com quatros espiras parasitas, capítulo IV, e uma antena planar do tipo espira, capítulo V. No primeiro caso, foram utilizados elementos parasitas e o algoritmo genético para aumentar a largura de banda e, no segundo, foram empregadas fendas no radiador e a otimização paramétrica para este objetivo.