957 resultados para Bio-hombre
Resumo:
Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa Departamento de Engenharia Electrotécnica Tese de mestrado
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
Describe las condiciones bio-oceanológicas encontradas en la región Callao -Punta Aguja, durante el Crucero E-6503, admitiendo que hubo cambios en el régimen térmico de nuestro mar, ocasionados por el avance hacia el sur de aguas ecuatoriales con temperaturas de 26º -24º C y salinidades de 34.6 -34.1 º/00. Por otro lado demuestra que la corriente costanera se presentó en forma de una franja estrecha, variable de 10-40 millas de la costa con temperaturas de 22º - 19º C y salinidades alrededor de 34.9 º/00. Estas aguas presentaron su mayor ensanchamiento al norte de Huarmey hasta Pimentel.
Resumo:
Constituye una análisis de la información oceanográfica obtenida de la Operación MOPFEN 9510-11 que se ejecutó del 25 de Octubre al 10 de noviembre de 1995, a bordo de la E/E Huamanga del CEP de Paita. Para ello, se realizó seis perfiles oceanográficos frente a Puerto Pizarro, Paita, Punta Falsa, Chicama, Chimbote y Callao. El estudio tuvo por finalidad conocer la variación que han tenido los parámetros ambientales durante la primavera e identificar la tendencia de las condiciones del mar peruano para el mes de diciembre de 1995 e inicios del verano de 1996, todo ello en base a ocurrencias de anomalías ambientales relacionadas al Fenómeno El Niño.
Resumo:
El monitoreo se realizó en agosto 2007, a bordo de la L/P IMARPE IV, desde La Yarada hasta 40 mn frente a Quilca. La temperatura superficial varió de 13,7 a 16,4 °C, menores valores (<14,5 °C) se registraron entre Tancona y Quilca dentro de las 15 mn y mayores (>16 °C) entre Punta Coles y el Dominio Marítimo Sur por fuera de 20 mn. Las anomalías térmicas variaron de -1,4 a -0,8 °C. La gradiente térmica vertical estuvo conformada por 3 isotermas (14 a 16 °C), la isolínea de 15 °C se presentó entre la superficie (zonas costeras) y 35 m. La anchoveta tuvo mayor distribución hasta 40 mn frente a Mollendo, dentro de las 5 mn se ubicó mezclada con múnida, principalmente frente a Playa Tacna y Mollendo.
Resumo:
Thecamoebian (testate amoeba) species diversity and assemblages in reclamation wetlands and lakes in northeastern Alberta respond to chemical and physical parameters associated with oil sands extraction. Ecosystems more impacted by OSPM (oil sands process-affected material) contain sparse, low-diversity populations dominated by centropyxid taxa and Arcella vulgaris. More abundant and diverse thecamoebian populations rich in difflugiid species characterize environments with lower OSPM concentrations. These shelled protists respond quickly to environmental change, allowing year-to-year variations in OSPM impact to be recorded. Their fossil record thus provides corporations with interests in the Athabasca Oil Sands with a potential means of measuring the progression of highlyimpacted aquatic environments to more natural wetlands. Development of this metric required investigation of controls on their fossil assemblage (e.g. seasonal variability, fossilization potential) and their biogeographic distribution, not only in the constructed lakes and wetlands on the oil sands leases, but also in natural environments across Alberta.
Resumo:
The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.
Resumo:
The first part of this thesis studied the capacity of amino acids and enzymes to catalyze the hydrolysis and condensation of tetraethoxysilane and phenyltrimethoxysilane. Selected amino acids were shown to accelerate the hydrolysis and condensation of tetraethoxysilane under ambient temperature, pressure and at neutral pH (pH 7±0.02). The nature of the side chain of the amino acid was important in promoting hydrolysis and condensation. Several proteases were shown to have a capacity to hydrolyze tri- and tet-ra- alkoxysilanes under the same mild reaction conditions. The second part of this thesis employed an immobilized Candida antarctica lipase B (Novozym-435, N435) to produce siloxane-containing polyesters, polyamides, and polyester amides under solvent-free conditions. Enzymatic activity was shown to be temperature dependent, increasing until enzyme denaturation became the dominant pro-cess, which typically occurred between 120-130ᵒC. The residual activity of N435 was, on average, greater than 90%, when used in the synthesis of disiloxane-containing polyesters, regardless of the polymerization temperature except at the very highest temperatures, 140-150ᵒC. A study of the thermal tolerance of N435 determined that, over ten reaction cycles, there was a decrease in the initial rate of polymerization with each consecutive use of the catalyst. No change in the degree of monomer conversion after a 24 hour reaction cycle was found.
Resumo:
UANL
Resumo:
Tesis ( Maestría en Derecho Laboral) U.A.N.L.