934 resultados para Bending moments
Resumo:
Il collasso di diverse colonne, caratterizzate da danneggiamenti simili, quali ampie fessure fortemente inclinate ad entrambe le estremità dell’elemento, lo schiacciamento del calcestruzzo e l’instabilità dei ferri longitudinali, ha portato ad interrogarsi riguardo gli effetti dell’interazione tra lo sforzo normale, il taglio ed il momento flettente. Lo studio è iniziato con una ricerca bibliografica che ha evidenziato una sostanziale carenza nella trattazione dell’argomento. Il problema è stato approcciato attraverso una ricerca di formule della scienza delle costruzioni, allo scopo di mettere in relazione lo sforzo assiale, il taglio ed il momento; la ricerca si è principalmente concentrata sulla teoria di Mohr. In un primo momento è stata considerata l’interazione tra solo due componenti di sollecitazione: sforzo assiale e taglio. L’analisi ha condotto alla costruzione di un dominio elastico di taglio e sforzo assiale che, confrontato con il dominio della Modified Compression Field Theory, trovata tramite ricerca bibliografica, ha permesso di concludere che i risultati sono assolutamente paragonabili. L’analisi si è poi orientata verso l’interazione tra sforzo assiale, taglio e momento flettente. Imponendo due criteri di rottura, il raggiungimento della resistenza a trazione ed a compressione del calcestruzzo, inserendo le componenti di sollecitazione tramite le formule di Navier e Jourawsky, sono state definite due formule che mettono in relazione le tre azioni e che, implementate nel software Matlab, hanno permesso la costruzione di un dominio tridimensionale. In questo caso non è stato possibile confrontare i risultati, non avendo la ricerca bibliografica mostrato niente di paragonabile. Lo studio si è poi concentrato sullo sviluppo di una procedura che tenta di analizzare il comportamento di una sezione sottoposta a sforzo normale, taglio e momento: è stato sviluppato un modello a fibre della sezione nel tentativo di condurre un calcolo non lineare, corrispondente ad una sequenza di analisi lineari. La procedura è stata applicata a casi reali di crollo, confermando l’avvenimento dei collassi.
Resumo:
Knowledge about segmental flexibility in adolescent idiopathic scoliosis is crucial for a better biomechanical understanding, particularly for the development of fusionless, growth-guiding techniques. Currently, there is lack of data in this field. The objective of this study was, therefore, to compute segmental flexibility indices (standing angle minus corrected angle/standing angle). We compared segmental disc angles in 76 preoperative sets of standing and fulcrum-bending radiographs of thoracic curves (paired, two-tailed t tests, p < 0.05). The mean standing Cobb angle was 59.7 degrees (range 41.3 degrees -95 degrees ) and the flexibility index of the curve was 48.6\% (range 16.6-78.8\%). The disc angles showed symmetric periapical distribution with significant decrease (all p values <0.0001) for every cephalad (+) and caudad (-) level change. The periapical levels +1 and -1 wedged at 8.3 degrees and 8.7 degrees (range 3.5 degrees -14.8 degrees ), respectively. All angles were significantly smaller on the-bending views (p values <0.0001). We noted mean periapical flexibility indices of 46\% (+1), 49\% (-1), 57\% (+2) and 81\% (-2), which were significantly less (p < 0.001) than for the group of remote levels 105\% (+3), 149\% (-3), 231\% (+4) and 300\% (-4). The discal and bony wedging was 60 and 40\%, respectively, and mean values 35 degrees and 24 degrees (p < 0.0001). Their relationship with the Cobb angle showed a moderate correlation (r = 0.56 and 0.45). Functional, radiographic analysis of idiopathic thoracic scoliosis revealed significant, homogenous segmental tethering confined to four periapical levels. Future research will aim at in vivo segmental measurements in three planes under defined load to provide in-depth data for novel therapeutic strategies.
Resumo:
As domain-specific modeling begins to attract widespread acceptance, pressure is increasing for the development of new domain-specific languages. Unfortunately these DSLs typically conflict with the grammar of the host language, making it difficult to compose hybrid code except at the level of strings; few mechanisms (if any) exist to control the scope of usage of multiple DSLs; and, most seriously, existing host language tools are typically unaware of the DSL extensions, thus hampering the development process. Language boxes address these issues by offering a simple, modular mechanism to encapsulate (i) compositional changes to the host language, (ii) transformations to address various concerns such as compilation and highlighting, and (iii) scoping rules to control visibility of language extensions. We describe the design and implementation of language boxes, and show with the help of several examples how modular extensions can be introduced to a host language and environment.
Resumo:
The aim of this study was to assess the effect of bracket type on the labiopalatal forces and moments generated in the sagittal plane. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on three identical maxillary acrylic resin models, with a palatally displaced right lateral incisor. The transfer trays for the indirect bonding of the lingual brackets were constructed in certified laboratories. Each model was mounted on the orthodontic measurement and simulation system and ten 0.013 inch CuNiTi wires were used for each bracket type. The wire was ligated with elastomerics and each measurement was repeated once after re-ligation. The labiopalatal forces and the moments in the sagittal plane were recorded on the right lateral incisor. One-way analysis of variance and post hoc Scheffe pairwise comparisons were used to assess the effect on bracket type on the generated forces and moments. The magnitude of forces ranged from 1.62, 1.27, and 1.81 N for the STb, conventional, and Incognito brackets, respectively; the corresponding moments were 2.01, 1.45, and 2.19 N mm, respectively. Bracket type was a significant predictor of the generated forces (P < 0.001) and moments (P < 0.001). The produced forces were different among all three bracket types, whereas the generated moments differed between conventional and lingual brackets but not between lingual brackets.
Resumo:
The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.
Resumo:
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Resumo:
Bending shear was observed to produce nearly vertical shear bands in a calving ice wall standing on dry land on Deception Island (Iat. 63.0 oS., long. 60.6 W.), and slabs calved straight downward when shear rupture occurred along these shear bands (Hughes, 1989). A formula for the calving rate was developed from the Deception Island data, and we have attempted to justify generalizing this formula to include ice walls standing along beaches or in water. These are environments in which a wave-washed groove develops along the base of the ice wall or along a water line above the base. The rate of wave erosion provides an alternative mechanism for controlling the calving rate in these environments. We have determined that the rate at which bending creep produces nearly vertical shear bands, along which shear r upture occurs, controls the calving rate in all environments. Shear rupture occurs at a calving shear stress of about I bar. Our results justify using the calving formula to compute the calving rate of ice walls in computer models of ice-sheet dynamics. This is especially important in simulating retreat of Northern Hemisphere ice sheets during the last deglaciation, when marine and lacustrine environments were common along retreating ice margins. These margins would have been ice walls standing along beaches or in water, because floating ice shelves are not expected in the ablation zone of retreating ice sheets.
Resumo:
This dissertation presents the concept of Deliberative Transformative Moment and the instrument to identify it, in a further attempt to bridge the gap between deliberation theory and practice. A transformative moment in the deliberative process occurs when the level of deliberation is either lifted from low to high or drops from high to low. In order to identify such a moment, one has to look at the context and dynamics of the group discussion. This broadening of the unit of analysis is a big difference from other existing instruments to measure the level of deliberation, such as the Deliberative Quality Index –DQI, which focuses primarily on the individual speech acts. Consistent with the theoretical framework of consociational and deliberation approaches, the observed discussions took place among two deeply divided groups, Colombian ex-combatants from both the extreme left and the extreme right. Moving beyond a pure Habermasian perspective, this study finds that besides pure rational arguments, there are some contexts in which personal stories, jokes and self-interests, acting as justification of arguments, have either a positive or a negative impact on deliberative transformative moments. Although this research has a strongly qualitative orientation, reliability tests scored high, giving it strength as a reliable and valid research method that shedding some light on the sort of speech acts that enhance deliberation and those that detract from it.