939 resultados para Bayesian belief network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance In treatment-resistant schizophrenia, clozapine is considered the standard treatment. However, clozapine use has restrictions owing to its many adverse effects. Moreover, an increasing number of randomized clinical trials (RCTs) of other antipsychotics have been published. Objective To integrate all the randomized evidence from the available antipsychotics used for treatment-resistant schizophrenia by performing a network meta-analysis. Data Sources MEDLINE, EMBASE, Biosis, PsycINFO, PubMed, Cochrane Central Register of Controlled Trials, World Health Organization International Trial Registry, and clinicaltrials.gov were searched up to June 30, 2014. Study Selection At least 2 independent reviewers selected published and unpublished single- and double-blind RCTs in treatment-resistant schizophrenia (any study-defined criterion) that compared any antipsychotic (at any dose and in any form of administration) with another antipsychotic or placebo. Data Extraction and Synthesis At least 2 independent reviewers extracted all data into standard forms and assessed the quality of all included trials with the Cochrane Collaboration's risk-of-bias tool. Data were pooled using a random-effects model in a Bayesian setting. Main Outcomes and Measures The primary outcome was efficacy as measured by overall change in symptoms of schizophrenia. Secondary outcomes included change in positive and negative symptoms of schizophrenia, categorical response to treatment, dropouts for any reason and for inefficacy of treatment, and important adverse events. Results Forty blinded RCTs with 5172 unique participants (71.5% men; mean [SD] age, 38.8 [3.7] years) were included in the analysis. Few significant differences were found in all outcomes. In the primary outcome (reported as standardized mean difference; 95% credible interval), olanzapine was more effective than quetiapine (-0.29; -0.56 to -0.02), haloperidol (-0. 29; -0.44 to -0.13), and sertindole (-0.46; -0.80 to -0.06); clozapine was more effective than haloperidol (-0.22; -0.38 to -0.07) and sertindole (-0.40; -0.74 to -0.04); and risperidone was more effective than sertindole (-0.32; -0.63 to -0.01). A pattern of superiority for olanzapine, clozapine, and risperidone was seen in other efficacy outcomes, but results were not consistent and effect sizes were usually small. In addition, relatively few RCTs were available for antipsychotics other than clozapine, haloperidol, olanzapine, and risperidone. The most surprising finding was that clozapine was not significantly better than most other drugs. Conclusions and Relevance Insufficient evidence exists on which antipsychotic is more efficacious for patients with treatment-resistant schizophrenia, and blinded RCTs-in contrast to unblinded, randomized effectiveness studies-provide little evidence of the superiority of clozapine compared with other second-generation antipsychotics. Future clozapine studies with high doses and patients with extremely treatment-refractory schizophrenia might be most promising to change the current evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are the backbone of osteoarthritis pain management. We aimed to assess the effectiveness of different preparations and doses of NSAIDs on osteoarthritis pain in a network meta-analysis. METHODS For this network meta-analysis, we considered randomised trials comparing any of the following interventions: NSAIDs, paracetamol, or placebo, for the treatment of osteoarthritis pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) and the reference lists of relevant articles for trials published between Jan 1, 1980, and Feb 24, 2015, with at least 100 patients per group. The prespecified primary and secondary outcomes were pain and physical function, and were extracted in duplicate for up to seven timepoints after the start of treatment. We used an extension of multivariable Bayesian random effects models for mixed multiple treatment comparisons with a random effect at the level of trials. For the primary analysis, a random walk of first order was used to account for multiple follow-up outcome data within a trial. Preparations that used different total daily dose were considered separately in the analysis. To assess a potential dose-response relation, we used preparation-specific covariates assuming linearity on log relative dose. FINDINGS We identified 8973 manuscripts from our search, of which 74 randomised trials with a total of 58 556 patients were included in this analysis. 23 nodes concerning seven different NSAIDs or paracetamol with specific daily dose of administration or placebo were considered. All preparations, irrespective of dose, improved point estimates of pain symptoms when compared with placebo. For six interventions (diclofenac 150 mg/day, etoricoxib 30 mg/day, 60 mg/day, and 90 mg/day, and rofecoxib 25 mg/day and 50 mg/day), the probability that the difference to placebo is at or below a prespecified minimum clinically important effect for pain reduction (effect size [ES] -0·37) was at least 95%. Among maximally approved daily doses, diclofenac 150 mg/day (ES -0·57, 95% credibility interval [CrI] -0·69 to -0·46) and etoricoxib 60 mg/day (ES -0·58, -0·73 to -0·43) had the highest probability to be the best intervention, both with 100% probability to reach the minimum clinically important difference. Treatment effects increased as drug dose increased, but corresponding tests for a linear dose effect were significant only for celecoxib (p=0·030), diclofenac (p=0·031), and naproxen (p=0·026). We found no evidence that treatment effects varied over the duration of treatment. Model fit was good, and between-trial heterogeneity and inconsistency were low in all analyses. All trials were deemed to have a low risk of bias for blinding of patients. Effect estimates did not change in sensitivity analyses with two additional statistical models and accounting for methodological quality criteria in meta-regression analysis. INTERPRETATION On the basis of the available data, we see no role for single-agent paracetamol for the treatment of patients with osteoarthritis irrespective of dose. We provide sound evidence that diclofenac 150 mg/day is the most effective NSAID available at present, in terms of improving both pain and function. Nevertheless, in view of the safety profile of these drugs, physicians need to consider our results together with all known safety information when selecting the preparation and dose for individual patients. FUNDING Swiss National Science Foundation (grant number 405340-104762) and Arco Foundation, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many public health agencies and researchers are interested in comparing hospital outcomes, for example, morbidity, mortality, and hospitalization across areas and hospitals. However, since there is variation of rates in clinical trials among hospitals because of several biases, we are interested in controlling for the bias and assessing real differences in clinical practices. In this study, we compared the variations between hospitals in rates of severe Intraventricular Haemorrhage (IVH) infant using Frequentist statistical approach vs. Bayesian hierarchical model through simulation study. The template data set for simulation study was included the number of severe IVH infants of 24 intensive care units in Australian and New Zealand Neonatal Network from 1995 to 1997 in severe IVH rate in preterm babies. We evaluated the rates of severe IVH for 24 hospitals with two hierarchical models in Bayesian approach comparing their performances with the shrunken rates in Frequentist method. Gamma-Poisson (BGP) and Beta-Binomial (BBB) were introduced into Bayesian model and the shrunken estimator of Gamma-Poisson (FGP) hierarchical model using maximum likelihood method were calculated as Frequentist approach. To simulate data, the total number of infants in each hospital was kept and we analyzed the simulated data for both Bayesian and Frequentist models with two true parameters for severe IVH rate. One was the observed rate and the other was the expected severe IVH rate by adjusting for five predictors variables for the template data. The bias in the rate of severe IVH infant estimated by both models showed that Bayesian models gave less variable estimates than Frequentist model. We also discussed and compared the results from three models to examine the variation in rate of severe IVH by 20th centile rates and avoidable number of severe IVH cases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the emerging telecom services make use of Outer Edge Networks, in particular Home Area Networks. The configuration and maintenance of such services may not be under full control of the telecom operator which still needs to guarantee the service quality experienced by the consumer. Diagnosing service faults in these scenarios becomes especially difficult since there may be not full visibility between different domains. This paper describes the fault diagnosis solution developed in the MAGNETO project, based on the application of Bayesian Inference to deal with the uncertainty. It also takes advantage of a distributed framework to deploy diagnosis components in the different domains and network elements involved, spanning both the telecom operator and the Outer Edge networks. In addition, MAGNETO features self-learning capabilities to automatically improve diagnosis knowledge over time and a partition mechanism that allows breaking down the overall diagnosis knowledge into smaller subsets. The MAGNETO solution has been prototyped and adapted to a particular outer edge scenario, and has been further validated on a real testbed. Evaluation of the results shows the potential of our approach to deal with fault management of outer edge networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed target tracking in wireless sensor networks (WSN) is an important problem, in which agreement on the target state can be achieved using conventional consensus methods, which take long to converge. We propose distributed particle filtering based on belief propagation (DPF-BP) consensus, a fast method for target tracking. According to our simulations, DPF-BP provides better performance than DPF based on standard belief consensus (DPF-SBC) in terms of disagreement in the network. However, in terms of root-mean square error, it can outperform DPF-SBC only for a specific number of consensus iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a model of Bayesian network for continuous variables, where densities and conditional densities are estimated with B-spline MoPs. We use a novel approach to directly obtain conditional densities estimation using B-spline properties. In particular we implement naive Bayes and wrapper variables selection. Finally we apply our techniques to the problem of predicting neurons morphological variables from electrophysiological ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are widely used in machine learning because they intuitively represent causal relations. Multi-label classification problems require each instance to be assigned a subset of a defined set of h labels. This problem is equivalent to finding a multi-valued decision function that predicts a vector of h binary classes. In this paper we obtain the decision boundaries of two widely used Bayesian network approaches for building multi-label classifiers: Multi-label Bayesian network classifiers built using the binary relevance method and Bayesian network chain classifiers. We extend our previous single-label results to multi-label chain classifiers, and we prove that, as expected, chain classifiers provide a more expressive model than the binary relevance method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian networks are data mining models with clear semantics and a sound theoretical foundation. In this keynote talk we will pinpoint a number of neuroscience problems that can be addressed using Bayesian networks. In neuroanatomy, we will show computer simulation models of dendritic trees and classification of neuron types, both based on morphological features. In neurology, we will present the search for genetic biomarkers in Alzheimer's disease and the prediction of health-related quality of life in Parkinson's disease. Most of these challenging problems posed by neuroscience involve new Bayesian network designs that can cope with multiple class variables, small sample sizes, or labels annotated by several experts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente tesis doctoral contribuye al problema del diagnóstico autonómico de fallos en redes de telecomunicación. En las redes de telecomunicación actuales, las operadoras realizan tareas de diagnóstico de forma manual. Dichas operaciones deben ser llevadas a cabo por ingenieros altamente cualificados que cada vez tienen más dificultades a la hora de gestionar debidamente el crecimiento exponencial de la red tanto en tamaño, complejidad y heterogeneidad. Además, el advenimiento del Internet del Futuro hace que la demanda de sistemas que simplifiquen y automaticen la gestión de las redes de telecomunicación se haya incrementado en los últimos años. Para extraer el conocimiento necesario para desarrollar las soluciones propuestas y facilitar su adopción por los operadores de red, se propone una metodología de pruebas de aceptación para sistemas multi-agente enfocada en simplificar la comunicación entre los diferentes grupos de trabajo involucrados en todo proyecto de desarrollo software: clientes y desarrolladores. Para contribuir a la solución del problema del diagnóstico autonómico de fallos, se propone una arquitectura de agente capaz de diagnosticar fallos en redes de telecomunicación de manera autónoma. Dicha arquitectura extiende el modelo de agente Belief-Desire- Intention (BDI) con diferentes modelos de diagnóstico que gestionan las diferentes sub-tareas del proceso. La arquitectura propuesta combina diferentes técnicas de razonamiento para alcanzar su propósito gracias a un modelo estructural de la red, que usa razonamiento basado en ontologías, y un modelo causal de fallos, que usa razonamiento Bayesiano para gestionar debidamente la incertidumbre del proceso de diagnóstico. Para asegurar la adecuación de la arquitectura propuesta en situaciones de gran complejidad y heterogeneidad, se propone un marco de argumentación que permite diagnosticar a agentes que estén ejecutando en dominios federados. Para la aplicación de este marco en un sistema multi-agente, se propone un protocolo de coordinación en el que los agentes dialogan hasta alcanzar una conclusión para un caso de diagnóstico concreto. Como trabajos futuros, se consideran la extensión de la arquitectura para abordar otros problemas de gestión como el auto-descubrimiento o la auto-optimización, el uso de técnicas de reputación dentro del marco de argumentación para mejorar la extensibilidad del sistema de diagnóstico en entornos federados y la aplicación de las arquitecturas propuestas en las arquitecturas de red emergentes, como SDN, que ofrecen mayor capacidad de interacción con la red. ABSTRACT This PhD thesis contributes to the problem of autonomic fault diagnosis of telecommunication networks. Nowadays, in telecommunication networks, operators perform manual diagnosis tasks. Those operations must be carried out by high skilled network engineers which have increasing difficulties to properly manage the growing of those networks, both in size, complexity and heterogeneity. Moreover, the advent of the Future Internet makes the demand of solutions which simplifies and automates the telecommunication network management has been increased in recent years. To collect the domain knowledge required to developed the proposed solutions and to simplify its adoption by the operators, an agile testing methodology is defined for multiagent systems. This methodology is focused on the communication gap between the different work groups involved in any software development project, stakeholders and developers. To contribute to overcoming the problem of autonomic fault diagnosis, an agent architecture for fault diagnosis of telecommunication networks is defined. That architecture extends the Belief-Desire-Intention (BDI) agent model with different diagnostic models which handle the different subtasks of the process. The proposed architecture combines different reasoning techniques to achieve its objective using a structural model of the network, which uses ontology-based reasoning, and a causal model, which uses Bayesian reasoning to properly handle the uncertainty of the diagnosis process. To ensure the suitability of the proposed architecture in complex and heterogeneous environments, an argumentation framework is defined. This framework allows agents to perform fault diagnosis in federated domains. To apply this framework in a multi-agent system, a coordination protocol is defined. This protocol is used by agents to dialogue until a reliable conclusion for a specific diagnosis case is reached. Future work comprises the further extension of the agent architecture to approach other managements problems, such as self-discovery or self-optimisation; the application of reputation techniques in the argumentation framework to improve the extensibility of the diagnostic system in federated domains; and the application of the proposed agent architecture in emergent networking architectures, such as SDN, which offers new capabilities of control for the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retrieval of wind fields from scatterometer observations has traditionally been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up to four local wind vector solutions. A heuristic procedure, using numerical weather prediction forecast wind vectors and, often, some neighbourhood comparison is then used to select the correct solution. In this paper we develop a Bayesian method for wind field retrieval, and show how a direct local inverse model, relating backscatter to wind vector, improves the wind vector retrieval accuracy. We compare these results with the operational U.K. Meteorological Office retrievals, our own CMOD4 retrievals and a neural network based local forward model retrieval. We suggest that the neural network based inverse model, which is extremely fast to use, improves upon current forward models when used in a variational data assimilation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural network learning rules can be viewed as statistical estimators. They should be studied in Bayesian framework even if they are not Bayesian estimators. Generalisation should be measured by the divergence between the true distribution and the estimated distribution. Information divergences are invariant measurements of the divergence between two distributions. The posterior average information divergence is used to measure the generalisation ability of a network. The optimal estimators for multinomial distributions with Dirichlet priors are studied in detail. This confirms that the definition is compatible with intuition. The results also show that many commonly used methods can be put under this unified framework, by assume special priors and special divergences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of measurements of generalisation is proposed for estimators of continuous distributions. In particular, they apply to neural network learning rules associated with continuous neural networks. The optimal estimators (learning rules) in this sense are Bayesian decision methods with information divergence as loss function. The Bayesian framework guarantees internal coherence of such measurements, while the information geometric loss function guarantees invariance. The theoretical solution for the optimal estimator is derived by a variational method. It is applied to the family of Gaussian distributions and the implications are discussed. This is one in a series of technical reports on this topic; it generalises the results of ¸iteZhu95:prob.discrete to continuous distributions and serve as a concrete example of a larger picture ¸iteZhu95:generalisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two probabilistic interpretations of the n-tuple recognition method are put forward in order to allow this technique to be analysed with the same Bayesian methods used in connection with other neural network models. Elementary demonstrations are then given of the use of maximum likelihood and maximum entropy methods for tuning the model parameters and assisting their interpretation. One of the models can be used to illustrate the significance of overlapping n-tuple samples with respect to correlations in the patterns.