455 resultados para BUSES
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.
Resumo:
This paper presents an alternative methodology for loading margin improvement and total real power losses reduction by using a continuation method. In order to attain this goal, a parameterizing equation based on the total real power losses and the equations of the reactive power at the slack and generation buses are added to the conventional power flow equations. The voltages at these buses are considered as control variables and a new parameter is chosen to reduce the real power losses in the transmission lines. The results show that this procedure leads to maximum loading point increase and consequently, in static voltage stability margin improvement. Besides, this procedure also takes to a reduction in the operational costs and, simultaneously, to voltage profile improvement. Another important result of this methodology is that the resulting operating points are close to that provided by an optimal power flow program. © 2004 IEEE.
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
This paper presents some initial concepts for including reactive power in linear methods for computing Available Transfer Capability (ATC). It is proposed an approximation for the reactive power flows computation that uses the exact circle equations for the transmission line complex flow, and then it is determined the ATC using active power distribution factors. The transfer capability can be increased using the sensitivities of flow that show the best group of buses which can have their reactive power injection modified in order to remove the overload in the transmission lines. The results of the ATC computation and of the use of the sensitivities of flow are presented using the Cigré 32-bus system. © 2004 IEEE.
Resumo:
The restructuring of energy markets to provide free access to the networks and the consequent increase of the number of power transactions has been causing congestions in transmission systems. As consequence, the networks suffer overloads in a more frequent way. One parameter that has strong influence on transfer capability is the reactive power flow. A sensitivity analysis can be used to find the best solution to minimize the reactive power flows and relief, the overload in one transmission line. The proposed methodology consists on the computation of two sensitivities based on the use of the Lc matrix from CRIC (Constant Reactive Implicitly Coupled) power flow method, that provide a set of actions to reduce the reactive power flow and alleviate overloads in the lines: (a) sensitivity between reactive power flow in lines and reactive power injections in the buses, (b) sensitivity between reactive power flow in lines and transformer's taps. © 2006 IEEE.
Resumo:
This paper proposes a dedicated algorithm for lation of single line-to-ground faults in distribution systems. The proposed algorithm uses voltage and current phasors measured at the substation level, voltage magnitudes measured at some buses of the feeder, a database containing electrical, operational and topological parameters of the distribution networks, and fault simulation. Voltage measurements can be obtained using power quality devices already installed on the feeders or using voltage measurement devices dedicated for fault location. Using the proposed algorithm, likely faulted points that are located on feeder laterals geographically far from the actual faulted point are excluded from the results. Assessment of the algorithm efficiency was carried out using a 238 buses real-life distribution feeder. The results show that the proposed algorithm is robust for performing fast and efficient fault location for sustained single line-to-ground faults requiring less than 5% of the feeder buses to be covered by voltage measurement devices. © 2006 IEEE.
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
Open access philosophy applied by regulatory agencies may lead to a scenario where captive consumers will solely face the responsibility on distribution network's losses even with Independent Energy Producers (also known as Distributed Generation) and Independent Energy Consumers connected to the system. This work proposes the utilization of a loss allocation method in distribution systems where open access is allowed, in which cross-subsidies, that appear due to the influence the generators have over the system losses, are minimized. Thus, guaranteeing to some extent the efficiency and transparency of the economic signals of the market. Results obtained through the Zbus loss allocation method adapted for distribution networks are processed in such a way that the corresponding allocation to the generation buses is divided among the consumer buses, while still considering consumers spatial characteristics. © 2007 IEEE.
Resumo:
This work presents the application of the relaxed barrier-Lagrangian function method to the optimal reactive dispatch problem, which is a nonlinear nonconvex and large problem. In this approach the inequality constraints are treated by the association of modified barrier and primal-dual logarithmic barrier method. Those constraints are transformed in equalities through positive auxiliary variables and are perturbed by the barrier parameter. A Lagrangian function is associated to the modified problem. The first-order necessary conditions are applied generating a non-linear system which is solved by Newton's method. The auxiliary variables perturbation result in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reach. Numeric tests with the systems CESP 53 buses and the south-southeast Brazilian and the comparative test with the primal-dual logarithmic barrier method indicate that presented method is efficient in the resolution of optimal reactive dispatch problem.
Resumo:
Distributed Generators (DG) are generally modeled as PQ or PV buses in power flow studies. But in order to integrate DG units into the distribution systems and control the reactive power injection it is necessary to know the operation mode and the type of connection to the system. This paper presents a single-phase and a three-phase mathematical model to integrate DG in power flow calculations in distribution systems, especially suited for Smart Grid calculations. If the DG is in PV mode, each step of the power flow algorithm calculates the reactive power injection from the DG to the system to keep the voltage in the bus in a predefined level, if the DG is in PQ mode, the power injection is considered as a negative load. The method is tested on two well known test system, presenting single-phase results on 85 bus system, and three-phase results in the IEEE 34 bus test system. © 2011 IEEE.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.
Resumo:
In this paper a heuristic technique for solving simultaneous short-term transmission network expansion and reactive power planning problem (TEPRPP) via an AC model is presented. A constructive heuristic algorithm (CHA) aimed to obtaining a significant quality solution for such problem is employed. An interior point method (IPM) is applied to solve TEPRPP as a nonlinear programming (NLP) during the solution steps of the algorithm. For each proposed network topology, an indicator is deployed to identify the weak buses for reactive power sources placement. The objective function of NLP includes the costs of new transmission lines, real power losses as well as reactive power sources. By allocating reactive power sources at load buses, the circuit capacity may increase while the cost of new lines can be decreased. The proposed methodology is tested on Garver's system and the obtained results shows its capability and the viability of using AC model for solving such non-convex optimization problem. © 2011 IEEE.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía